Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China.
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China.
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):4809-4819. doi: 10.1021/acsami.8b18981. Epub 2019 Jan 24.
Real-time transdermal biosensing provides a direct route to quantify biomarkers or physiological signals of local tissues. Although microneedles (MNs) present a mini-invasive transdermal technique, integration of MNs with advanced nanostructures to enhance sensing functionalities has rarely been achieved. This is largely due to the fact that nanostructures present on MNs surface could be easily destructed due to friction during skin insertion. In this work, we reported a dissolvable polymer-coating technique to protect nanostructures-integrated MNs from mechanical destruction during MNs insertion. After penetration into the skin, the polymer could readily dissolve by interstitial fluids so that the superficial nanostructures on MNs could be re-exposed for sensing purpose. To demonstrate this technique, metallic and resin MNs decorated with vertical ZnO nanowires (vNWs) were employed as an example. Dissolvable poly(vinyl pyrrolidone) was spray-coated on the vNW-MNs surface as a protective layer, which effectively protected the superficial ZnO NWs when MNs penetrated the skin. Transdermal biosensing of HO biomarker in skin tissue using the polymer-protecting MNs sensor was demonstrated both ex vivo and in vivo. The results indicated that polymer coating successfully preserved the sensing functionalities of the MNs sensor after inserting into the skin, whereas the sensitivity of the MN sensor without a coating protection was significantly compromised by 3-folds. This work provided unique opportunities of protecting functional nanomodulus on MNs surface for minimally invasive transdermal biosensing.
实时透皮生物传感提供了一种定量分析局部组织生物标志物或生理信号的直接途径。虽然微针 (MNs) 是一种微创透皮技术,但将 MNs 与先进的纳米结构集成以增强传感功能的方法很少实现。这主要是因为 MNs 表面的纳米结构在皮肤插入过程中由于摩擦很容易被破坏。在这项工作中,我们报告了一种可溶解聚合物涂层技术,以保护集成有纳米结构的 MNs 在 MNs 插入过程中免受机械破坏。在穿透皮肤后,聚合物可以通过间质液迅速溶解,从而使 MNs 表面的浅层纳米结构能够重新暴露用于传感目的。为了证明这种技术,我们以具有垂直 ZnO 纳米线 (vNWs) 的金属和树脂 MNs 为例。可溶解的聚(吡咯烷酮)被喷涂在 vNW-MNs 表面作为保护层,当 MNs 穿透皮肤时,它可以有效地保护表面的 ZnO NWs。使用聚合物保护的 MNs 传感器在离体和体内都证明了对 HO 生物标志物在皮肤组织中的透皮生物传感。结果表明,聚合物涂层在插入皮肤后成功地保留了 MNs 传感器的传感功能,而没有涂层保护的 MNs 传感器的灵敏度则显著降低了 3 倍。这项工作为微创透皮生物传感提供了保护 MNs 表面功能纳米结构的独特机会。