Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.
Department of Neuroscience, Yale University School of Medicine, New Haven, United States.
Elife. 2019 Jan 10;8:e44003. doi: 10.7554/eLife.44003.
Piezo1 and Piezo2 belong to a family of mechanically-activated ion channels implicated in a wide range of physiological processes. Mechanical stimulation triggers Piezo channels to open, but their characteristic fast inactivation process results in rapid closure. Several disease-causing mutations in Piezo1 alter the rate of inactivation, highlighting the importance of inactivation to the normal function of this channel. However, despite the structural identification of two physical constrictions within the closed pore, the mechanism of inactivation remains unknown. Here we identify a functionally conserved inactivation gate in the pore-lining inner helix of mouse Piezo1 and Piezo2 that is distinct from the two constrictions. We show that this gate controls the majority of Piezo1 inactivation via a hydrophobic mechanism and that one of the physical constrictions acts as a secondary gate. Our results suggest that, unlike other rapidly inactivating ion channels, a hydrophobic barrier gives rise to fast inactivation in Piezo channels.
Piezo1 和 Piezo2 属于机械激活离子通道家族,涉及多种生理过程。机械刺激触发 Piezo 通道打开,但它们的特征性快速失活过程导致快速关闭。Piezo1 中的几种致病突变改变了失活的速度,突出了失活对该通道正常功能的重要性。然而,尽管已经在封闭孔内鉴定出两个物理狭窄部位,但失活的机制仍不清楚。在这里,我们确定了在小鼠 Piezo1 和 Piezo2 的孔衬内环中存在一个功能保守的失活门,该失活门与两个狭窄部位不同。我们表明,该门通过疏水机制控制 Piezo1 的大部分失活,并且其中一个物理狭窄部位起次要门的作用。我们的结果表明,与其他快速失活的离子通道不同,疏水屏障在 Piezo 通道中引起快速失活。