Suppr超能文献

通过多尺度建模预测药物诱导的心律失常。

Predicting drug-induced arrhythmias by multiscale modeling.

作者信息

Sahli Costabal Francisco, Yao Jiang, Kuhl Ellen

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

Dassault Systèmes Simulia Corporation, Johnston, RI, USA.

出版信息

Int J Numer Method Biomed Eng. 2018 May;34(5):e2964. doi: 10.1002/cnm.2964. Epub 2018 Mar 25.

Abstract

Drugs often have undesired side effects. In the heart, they can induce lethal arrhythmias such as torsades de pointes. The risk evaluation of a new compound is costly and can take a long time, which often hinders the development of new drugs. Here, we establish a high-resolution, multiscale computational model to quickly assess the cardiac toxicity of new and existing drugs. The input of the model is the drug-specific current block from single cell electrophysiology; the output is the spatio-temporal activation profile and the associated electrocardiogram. We demonstrate the potential of our model for a low-risk drug, ranolazine, and a high-risk drug, quinidine: For ranolazine, our model predicts a prolonged QT interval of 19.4% compared with baseline and a regular sinus rhythm at 60.15 beats per minute. For quinidine, our model predicts a prolonged QT interval of 78.4% and a spontaneous development of torsades de pointes both in the activation profile and in the electrocardiogram. Our model reveals the mechanisms by which electrophysiological abnormalities propagate across the spatio-temporal scales, from specific channel blockage, via altered single cell action potentials and prolonged QT intervals, to the spontaneous emergence of ventricular tachycardia in the form of torsades de pointes. Our model could have important implications for researchers, regulatory agencies, and pharmaceutical companies on rationalizing safe drug development and reducing the time-to-market of new drugs.

摘要

药物常常会产生不良副作用。在心脏方面,它们可诱发致命性心律失常,如尖端扭转型室速。对一种新化合物进行风险评估成本高昂且耗时长久,这常常阻碍新药的研发。在此,我们建立了一种高分辨率、多尺度计算模型,以快速评估新药和现有药物的心脏毒性。该模型的输入是单细胞电生理学中药物特异性电流阻滞;输出是时空激活图谱及相关心电图。我们展示了该模型对低风险药物雷诺嗪和高风险药物奎尼丁的评估潜力:对于雷诺嗪,我们的模型预测其QT间期较基线延长19.4%,且窦性心律规则,心率为每分钟60.15次。对于奎尼丁,我们的模型预测其QT间期延长78.4%,且在激活图谱和心电图中均会自发出现尖端扭转型室速。我们的模型揭示了电生理异常从特定通道阻滞开始,经单个细胞动作电位改变和QT间期延长,到以尖端扭转型室速形式自发出现室性心动过速,在时空尺度上传播的机制。我们的模型可能会对研究人员、监管机构和制药公司在合理开展安全药物研发以及缩短新药上市时间方面产生重要影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验