Suppr超能文献

基于胜者全得的脉冲时间依赖可塑性的无监督特征学习

Unsupervised Feature Learning With Winner-Takes-All Based STDP.

作者信息

Ferré Paul, Mamalet Franck, Thorpe Simon J

机构信息

Centre National de la Recherche Scientifique, UMR-5549, Toulouse, France.

Brainchip SAS, Balma, France.

出版信息

Front Comput Neurosci. 2018 Apr 5;12:24. doi: 10.3389/fncom.2018.00024. eCollection 2018.

Abstract

We present a novel strategy for unsupervised feature learning in image applications inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and ReLU artificial neurons when applied to non-temporal data. We apply this to images using rank-order coding, which allows us to perform a full network simulation with a single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning rule compatible with training on batches of images. Two mechanisms to stabilize the training are also presented : a Winner-Takes-All (WTA) framework which selects the most relevant patches to learn from along the spatial dimensions, and a simple feature-wise normalization as homeostatic process. This learning process allows us to train multi-layer architectures of convolutional sparse features. We apply our method to extract features from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features are relevant for classification. We finally compare these results with several other state of the art unsupervised learning methods.

摘要

我们提出了一种受脉冲时间依赖可塑性(STDP)生物学习规则启发的图像应用无监督特征学习新策略。当应用于非时间数据时,我们展示了秩次编码泄漏积分发放神经元与ReLU人工神经元之间的等效性。我们使用秩次编码将其应用于图像,这使我们能够使用GPU硬件通过单次前馈传递进行全网络模拟。接下来,我们引入了一种与批量图像训练兼容的二进制STDP学习规则。还提出了两种稳定训练的机制:一种赢家通吃(WTA)框架,它沿空间维度选择最相关的补丁进行学习,以及一种作为稳态过程的简单特征归一化。这种学习过程使我们能够训练卷积稀疏特征的多层架构。我们应用我们的方法从MNIST、ETH80、CIFAR-10和STL-10数据集中提取特征,并表明这些特征与分类相关。我们最终将这些结果与其他几种先进的无监督学习方法进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c6c/5895733/5df4b6c1d969/fncom-12-00024-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验