Suppr超能文献

基于连接组学的模型预测信任倾向的个体差异。

Connectome-based model predicts individual differences in propensity to trust.

机构信息

Center for Brain Disorders and Cognitive Sciences, Shenzhen Univeristy, Shenzhen, China.

Brain, Mind & Markets Laboratory, Department of Finance, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Hum Brain Mapp. 2019 Apr 15;40(6):1942-1954. doi: 10.1002/hbm.24503. Epub 2019 Jan 11.

Abstract

Trust constitutes a fundamental basis of human society and plays a pivotal role in almost every aspect of human relationships. Although enormous interest exists in determining the neuropsychological underpinnings of a person's propensity to trust utilizing task-based fMRI; however, little progress has been made in predicting its variations by task-free fMRI based on whole-brain resting-state functional connectivity (RSFC). Here, we combined a one-shot trust game with a connectome-based predictive modeling approach to predict propensity to trust from whole-brain RSFC. We demonstrated that individual variations in the propensity to trust were primarily predicted by RSFC rooted in the functional integration of distributed key nodes-caudate, amygdala, lateral prefrontal cortex, temporal-parietal junction, and the temporal pole-which are part of domain-general large-scale networks essential for the motivational, affective, and cognitive aspects of trust. We showed, further, that the identified brain-behavior associations were only evident for trust but not altruistic preferences and that propensity to trust (and its underlying neural underpinnings) were modulated according to the extent to which a person emphasizes general social preferences (i.e., horizontal collectivism) rather than general risk preferences (i.e., trait impulsiveness). In conclusion, the employed data-driven approach enables to predict propensity to trust from RSFC and highlights its potential use as an objective neuromarker of trust impairment in mental disorders.

摘要

信任是人类社会的基本基础,几乎在人际关系的各个方面都起着关键作用。尽管利用任务型 fMRI 确定一个人信任倾向的神经心理学基础存在巨大的兴趣;然而,基于全脑静息态功能连接(RSFC)的无任务 fMRI 预测其变化的进展甚微。在这里,我们将单次信任博弈与基于连接组的预测建模方法相结合,从全脑 RSFC 预测信任倾向。我们证明,信任倾向的个体差异主要由根植于分布关键节点(尾状核、杏仁核、外侧前额叶皮层、颞顶联合区和颞极)功能整合的 RSFC 预测,这些节点是普遍存在的大规模网络的一部分,对于信任的动机、情感和认知方面至关重要。我们进一步表明,所确定的大脑-行为关联仅在信任中存在,而不在利他偏好中存在,并且信任倾向(及其潜在的神经基础)根据一个人强调一般社会偏好(即水平集体主义)而不是一般风险偏好(即特质冲动性)的程度而发生变化。总之,所采用的数据驱动方法能够从 RSFC 预测信任倾向,并强调其作为精神障碍中信任障碍的客观神经标志物的潜在用途。

相似文献

4
8
Connectome-based individualized prediction of loneliness.基于连接组学的个体孤独感预测。
Soc Cogn Affect Neurosci. 2019 May 17;14(4):353-365. doi: 10.1093/scan/nsz020.

引用本文的文献

本文引用的文献

1
The neural circuitry of affect-induced distortions of trust.情感诱发信任扭曲的神经回路。
Sci Adv. 2019 Mar 13;5(3):eaau3413. doi: 10.1126/sciadv.aau3413. eCollection 2019 Mar.
10
Robust prediction of individual creative ability from brain functional connectivity.从大脑功能连接预测个体的创造力
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1087-1092. doi: 10.1073/pnas.1713532115. Epub 2018 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验