Suppr超能文献

TIE-1 过表达 RuBisCO 形式 I 和 II 基因可增强聚羟基烷酸酯的异养和自养生产。

Overexpression of RuBisCO form I and II genes in TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically.

机构信息

Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.

LifeFoundry, San Jose, California, USA.

出版信息

Appl Environ Microbiol. 2024 Sep 18;90(9):e0143824. doi: 10.1128/aem.01438-24. Epub 2024 Aug 20.

Abstract

With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NHCl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NHCl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NHCl, and two times under photoelectrotrophic growth with N . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the or genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.

摘要

随着对可持续可再生资源需求的增加,能够生产生物制品(如生物塑料)的微生物备受关注。虽然许多生物生产系统在模式生物中得到了很好的研究,但研究非模式生物对于拓展领域和利用代谢多功能菌株至关重要。本研究以能够生产生物塑料的紫色非硫细菌 TIE-1 为中心。为了提高生物塑料的产量,我们删除了编码假定调节蛋白 PhaR 和多羟基烷酸(PHA)生物合成途径解聚酶 PhaZ 的基因。删除了与 PHA 生产可能竞争的途径相关的基因,特别是与糖原生产和固氮相关的基因。此外,我们通过本研究中开发的噬菌体整合系统将 RuBisCO 形式 I 和 II 基因整合到 TIE-1 的基因组中。我们的研究结果表明,当 TIE-1 在以丁酸和氯化铵(NHCl)为碳源的异养条件下生长时,删除 可增加 PHA 的产量。在以氢气和 NHCl 为碳源的自养条件下,不能合成糖原或固氮的突变体的 PHA 产量增加。当 RuBisCO 形式 I 和 I & II 基因过表达时,PHA 的产量增加最为显著,在丁酸异养条件下增加了五倍,在氢气和 NHCl 自养条件下增加了两倍,在 N 光电极条件下增加了两倍。综上所述,将 RuBisCO 基因的拷贝插入 TIE-1 基因组是一种比删除竞争途径更有效的策略,可提高 TIE-1 中 PHA 的产量。噬菌体整合系统的成功应用为 TIE-1 的合成生物学开辟了许多机会。

重要性

几十年来,由于广泛使用石油衍生塑料造成的污染,我们的星球一直承受着沉重的负担。自发现可生物降解的塑料替代品以来,人们一直在努力提高它们的生物产量。多功能微生物 TIE-1(TIE-1)因其能够使用多种电子源、固定温室气体 CO 以及将光作为能源而成为生物塑料合成的有前途的候选物。从 TIE-1 野生型精心设计了两类菌株,以提高聚羟基烷酸(PHA)的产量,PHA 是一种这样的生物塑料。第一组包括在 PHA 途径中缺失 或 基因的突变体,以及那些缺乏潜在竞争碳和能量汇(即糖原生物合成和固氮)到 PHA 途径的突变体。第二组包括通过噬菌体整合系统过表达 RuBisCO 形式 I 或 I & II 基因的 TIE-1 菌株。通过研究许多代谢突变体和过表达菌株,我们得出结论,对环境微生物 TIE-1 的遗传修饰可以提高 PHA 的产量。当与其他方法(如反应器设计、使用微生物群落和不同的原料)结合使用时,对 TIE-1 等紫色非硫细菌进行遗传和代谢操作对于用可生物降解塑料(如 PHA)替代石油衍生塑料至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e263/11409669/ce5e5d173dd8/aem.01438-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验