Suppr超能文献

非编码RNA功能表征的工作流程开发

Workflow Development for the Functional Characterization of ncRNAs.

作者信息

Wolfien Markus, Brauer David Leon, Bagnacani Andrea, Wolkenhauer Olaf

机构信息

Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany.

Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa.

出版信息

Methods Mol Biol. 2019;1912:111-132. doi: 10.1007/978-1-4939-8982-9_5.

Abstract

During the last decade, ncRNAs have been investigated intensively and revealed their regulatory role in various biological processes. Worldwide research efforts have identified numerous ncRNAs and multiple RNA subtypes, which are attributed to diverse functionalities known to interact with different functional layers, from DNA and RNA to proteins. This makes the prediction of functions for newly identified ncRNAs challenging. Current bioinformatics and systems biology approaches show promising results to facilitate an identification of these diverse ncRNA functionalities. Here, we review (a) current experimental protocols, i.e., for Next Generation Sequencing, for a successful identification of ncRNAs; (b) sequencing data analysis workflows as well as available computational environments; and (c) state-of-the-art approaches to functionally characterize ncRNAs, e.g., by means of transcriptome-wide association studies, molecular network analyses, or artificial intelligence guided prediction. In addition, we present a strategy to cover the identification and functional characterization of unknown transcripts by using connective workflows.

摘要

在过去十年中,非编码RNA(ncRNAs)受到了深入研究,并揭示了它们在各种生物过程中的调控作用。全球范围内的研究工作已经鉴定出大量的ncRNAs和多种RNA亚型,它们具有多种功能,已知可与从DNA、RNA到蛋白质的不同功能层相互作用。这使得预测新鉴定的ncRNAs的功能具有挑战性。当前的生物信息学和系统生物学方法在促进识别这些多样的ncRNA功能方面显示出了有前景的结果。在此,我们综述:(a)当前用于成功鉴定ncRNAs的实验方案,即用于下一代测序的方案;(b)测序数据分析工作流程以及可用的计算环境;(c)对ncRNAs进行功能表征的最新方法,例如通过全转录组关联研究、分子网络分析或人工智能指导的预测。此外,我们提出了一种通过使用连接工作流程来涵盖未知转录本的鉴定和功能表征的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验