State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
Sci China Life Sci. 2020 Apr;63(4):501-515. doi: 10.1007/s11427-019-1658-x. Epub 2020 Mar 11.
RNA can interact with RNA-binding proteins (RBPs), mRNA, or other non-coding RNAs (ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins (RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure.
RNA 可以与 RNA 结合蛋白(RBPs)、mRNA 或其他非编码 RNA(ncRNAs)相互作用,形成复杂的调控网络。高通量 CLIP-seq、降解组-seq 和 RNA-RNA 互作测序方法是鉴定具有生物学意义的 ncRNA 靶标和蛋白-ncRNA 相互作用的有力方法。然而,将 ncRNA 分配给其调控靶基因或相互作用的 RNA 结合蛋白(RBPs)仍然具有技术挑战性。mRNA 的化学修饰在调节基因表达方面也起着重要作用。对这些修饰的功能作用的研究高度依赖于所使用的检测方法。RNA 结构在 RNA 生命周期的几乎每一步都至关重要。在这篇综述中,我们总结了 CLIP 技术的最新进展和局限性,并讨论了用于解码 ncRNA 功能和调控网络的计算挑战和生物信息学工具。我们还总结了用于检测 RNA 修饰和探测 RNA 结构的方法。