Suppr超能文献

一种在高维环境中具有测量性多效性效应的孟德尔随机化的高效稳健方法。

An efficient and robust approach to Mendelian randomization with measured pleiotropic effects in a high-dimensional setting.

机构信息

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK and Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK.

出版信息

Biostatistics. 2022 Apr 13;23(2):609-625. doi: 10.1093/biostatistics/kxaa045.

Abstract

Valid estimation of a causal effect using instrumental variables requires that all of the instruments are independent of the outcome conditional on the risk factor of interest and any confounders. In Mendelian randomization studies with large numbers of genetic variants used as instruments, it is unlikely that this condition will be met. Any given genetic variant could be associated with a large number of traits, all of which represent potential pathways to the outcome which bypass the risk factor of interest. Such pleiotropy can be accounted for using standard multivariable Mendelian randomization with all possible pleiotropic traits included as covariates. However, the estimator obtained in this way will be inefficient if some of the covariates do not truly sit on pleiotropic pathways to the outcome. We present a method that uses regularization to identify which out of a set of potential covariates need to be accounted for in a Mendelian randomization analysis in order to produce an efficient and robust estimator of a causal effect. The method can be used in the case where individual-level data are not available and the analysis must rely on summary-level data only. It can be used where there are any number of potential pleiotropic covariates up to the number of genetic variants less one. We show the results of simulation studies that demonstrate the performance of the proposed regularization method in realistic settings. We also illustrate the method in an applied example which looks at the causal effect of urate plasma concentration on coronary heart disease.

摘要

使用工具变量有效估计因果效应要求所有工具变量都与感兴趣的风险因素和任何混杂因素条件下的结果独立。在使用大量遗传变异作为工具的孟德尔随机化研究中,这种情况不太可能满足。任何给定的遗传变异都可能与大量特征相关,所有这些特征都代表了绕过感兴趣风险因素的潜在结果途径。这种多效性可以使用标准的多变量孟德尔随机化来解释,将所有可能的多效性特征作为协变量包含在内。然而,如果一些协变量实际上并没有真正位于多效性途径上,那么这种方法得到的估计量将是低效的。我们提出了一种方法,该方法使用正则化来确定在孟德尔随机化分析中需要考虑哪些潜在协变量,以生成因果效应的有效和稳健估计量。该方法可用于无法获得个体水平数据且分析必须仅依赖汇总水平数据的情况。它可以用于存在任意数量的潜在多效性协变量,最多可达遗传变异数减一。我们展示了模拟研究的结果,这些结果表明了所提出的正则化方法在实际情况下的性能。我们还在一个应用示例中说明了该方法,该示例研究了尿酸血浆浓度对冠心病的因果效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec6f/9007434/e01d37ec389f/kxaa045f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验