Suppr超能文献

快速自动化肝脏定量磁化率映射。

Rapid automated liver quantitative susceptibility mapping.

机构信息

Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.

Department of Radiology, Weill Medical College of Cornell University, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2019 Sep;50(3):725-732. doi: 10.1002/jmri.26632. Epub 2019 Jan 13.

Abstract

BACKGROUND

Accurate measurement of the liver iron concentration (LIC) is needed to guide iron-chelating therapy for patients with transfusional iron overload. In this work, we investigate the feasibility of automated quantitative susceptibility mapping (QSM) to measure the LIC.

PURPOSE

To develop a rapid, robust, and automated liver QSM for clinical practice.

STUDY TYPE

Prospective.

POPULATION

13 healthy subjects and 22 patients.

FIELD STRENGTH/SEQUENCES: 1.5 T and 3 T/3D multiecho gradient-recalled echo (GRE) sequence.

ASSESSMENT

Data were acquired using a 3D GRE sequence with an out-of-phase echo spacing with respect to each other. All odd echoes that were in-phase (IP) were used to initialize the fat-water separation and field estimation (T *-IDEAL) before performing QSM. Liver QSM was generated through an automated pipeline without manual intervention. This IP echo-based initialization method was compared with an existing graph cuts initialization method (simultaneous phase unwrapping and removal of chemical shift, SPURS) in healthy subjects (n = 5). Reproducibility was assessed over four scanners at two field strengths from two manufacturers using healthy subjects (n = 8). Clinical feasibility was evaluated in patients (n = 22).

STATISTICAL TESTS

IP and SPURS initialization methods in both healthy subjects and patients were compared using paired t-test and linear regression analysis to assess processing time and region of interest (ROI) measurements. Reproducibility of QSM, R *, and proton density fat fraction (PDFF) among the four different scanners was assessed using linear regression, Bland-Altman analysis, and the intraclass correlation coefficient (ICC).

RESULTS

Liver QSM using the IP method was found to be ~5.5 times faster than SPURS (P < 0.05) in initializing T *-IDEAL with similar outputs. Liver QSM using the IP method were reproducibly generated in all four scanners (average coefficient of determination 0.95, average slope 0.90, average bias 0.002 ppm, 95% limits of agreement between -0.06 to 0.07 ppm, ICC 0.97).

DATA CONCLUSION

Use of IP echo-based initialization enables robust water/fat separation and field estimation for automated, rapid, and reproducible liver QSM for clinical applications.

LEVEL OF EVIDENCE

1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:725-732.

摘要

背景

为了指导输血性铁过载患者的铁螯合治疗,需要准确测量肝脏铁浓度(LIC)。在这项工作中,我们研究了自动定量磁化率映射(QSM)测量 LIC 的可行性。

目的

开发一种快速、稳健且自动化的临床用肝脏 QSM。

研究类型

前瞻性。

人群

13 名健康受试者和 22 名患者。

磁场强度/序列:1.5T 和 3T/3D 多回波梯度回波(GRE)序列。

评估

使用具有相互相位失谐的 3D GRE 序列采集数据。所有同相(IP)奇数回波都用于在执行 QSM 之前进行脂肪-水分离和场估计(T * -IDEAL)初始化。肝脏 QSM 通过无人工干预的自动化流水线生成。在健康受试者(n=5)中,将这种基于 IP 回波的初始化方法与现有的图切割初始化方法(同时相位解缠和去除化学位移,SPURS)进行了比较。使用健康受试者(n=8),在两个制造商的两个场强的四台扫描仪上评估了可重复性。在 22 名患者中评估了临床可行性。

统计学检验

使用配对 t 检验和线性回归分析比较健康受试者和患者中的 IP 和 SPURS 初始化方法,以评估处理时间和感兴趣区域(ROI)测量值。使用线性回归、Bland-Altman 分析和组内相关系数(ICC)评估四台不同扫描仪之间的 QSM、R *和质子密度脂肪分数(PDFF)的可重复性。

结果

在对 T * -IDEAL 进行初始化时,使用 IP 方法的肝脏 QSM 发现比 SPURS 快约 5.5 倍(P<0.05),而输出结果相似。在所有四台扫描仪中,均能稳定地生成基于 IP 方法的肝脏 QSM(平均决定系数 0.95,平均斜率 0.90,平均偏差 0.002ppm,95%一致性区间在-0.06 到 0.07ppm 之间,ICC 0.97)。

数据结论

使用 IP 回波基初始化可实现稳健的水/脂肪分离和场估计,从而实现临床应用的自动化、快速和可重复的肝脏 QSM。

证据水平

1 技术功效:第 2 阶段 J. 磁共振成像 2019;50:725-732。

相似文献

1
Rapid automated liver quantitative susceptibility mapping.
J Magn Reson Imaging. 2019 Sep;50(3):725-732. doi: 10.1002/jmri.26632. Epub 2019 Jan 13.
2
Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration.
J Magn Reson Imaging. 2018 Oct;48(4):1069-1079. doi: 10.1002/jmri.26019. Epub 2018 Mar 22.
7
Can Automated 3-Dimensional Dixon-Based Methods Be Used in Patients With Liver Iron Overload?
J Comput Assist Tomogr. 2024;48(3):343-353. doi: 10.1097/RCT.0000000000001574. Epub 2024 Apr 9.
10
Biexponential R2* relaxometry for estimation of liver iron concentration in children: A better fit for high liver iron states.
J Magn Reson Imaging. 2019 Oct;50(4):1191-1198. doi: 10.1002/jmri.26735. Epub 2019 Apr 5.

引用本文的文献

1
[A single repetition time quantitative magnetic susceptibility imaging method for the lumbar spine using bipolar readout gradient].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Jun 20;45(6):1336-1342. doi: 10.12122/j.issn.1673-4254.2025.06.23.
2
Hemosiderin quantification in hemophilic arthropathy using quantitative magnetic resonance imaging.
Sci Rep. 2025 Apr 24;15(1):14353. doi: 10.1038/s41598-025-99085-7.
3
5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI.
Med Image Anal. 2025 May;102:103532. doi: 10.1016/j.media.2025.103532. Epub 2025 Mar 19.
4
Water/fat separate reconstruction for body quantitative susceptibility mapping in MRI.
Radiol Phys Technol. 2025 Mar;18(1):320-328. doi: 10.1007/s12194-024-00878-8. Epub 2025 Jan 6.
6
State-of-the-Art Quantification of Liver Iron With MRI-Vendor Implementation and Available Tools.
J Magn Reson Imaging. 2025 Mar;61(3):1110-1132. doi: 10.1002/jmri.29526. Epub 2024 Aug 12.
8
Liver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes.
Eur Radiol. 2023 Sep;33(9):6557-6568. doi: 10.1007/s00330-023-09576-2. Epub 2023 Apr 4.
9
Data adaptive regularization with reference tissue constraints for liver quantitative susceptibility mapping.
Magn Reson Med. 2023 Aug;90(2):385-399. doi: 10.1002/mrm.29644. Epub 2023 Mar 17.
10
QSM Throughout the Body.
J Magn Reson Imaging. 2023 Jun;57(6):1621-1640. doi: 10.1002/jmri.28624. Epub 2023 Feb 7.

本文引用的文献

1
Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration.
J Magn Reson Imaging. 2018 Oct;48(4):1069-1079. doi: 10.1002/jmri.26019. Epub 2018 Mar 22.
2
Liver Iron Quantification with MR Imaging: A Primer for Radiologists.
Radiographics. 2018 Mar-Apr;38(2):392-412. doi: 10.1148/rg.2018170079.
4
Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care.
J Magn Reson Imaging. 2017 Oct;46(4):951-971. doi: 10.1002/jmri.25693. Epub 2017 Mar 10.
6
On the influence of zero-padding on the nonlinear operations in Quantitative Susceptibility Mapping.
Magn Reson Imaging. 2017 Jan;35:154-159. doi: 10.1016/j.mri.2016.08.020. Epub 2016 Aug 29.
7
Quantitative susceptibility mapping of the midbrain in Parkinson's disease.
Mov Disord. 2016 Mar;31(3):317-24. doi: 10.1002/mds.26417. Epub 2015 Sep 12.
8
Metrology Standards for Quantitative Imaging Biomarkers.
Radiology. 2015 Dec;277(3):813-25. doi: 10.1148/radiol.2015142202. Epub 2015 Aug 12.
9
Phase-corrected bipolar gradients in multi-echo gradient-echo sequences for quantitative susceptibility mapping.
MAGMA. 2015 Aug;28(4):347-55. doi: 10.1007/s10334-014-0470-3. Epub 2014 Nov 20.
10
Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping.
IEEE Trans Med Imaging. 2015 Feb;34(2):531-40. doi: 10.1109/TMI.2014.2361764. Epub 2014 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验