Suppr超能文献

科学与政策相结合:确定受蓝藻水华影响的大型水体损伤指定标准的框架。

Science meets policy: A framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal blooms.

机构信息

Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.

National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD, 20910, USA.

出版信息

Harmful Algae. 2019 Jan;81:59-64. doi: 10.1016/j.hal.2018.11.016. Epub 2018 Dec 10.

Abstract

Toxic cyanobacterial harmful algal blooms (cyanoHABs) are one of the most significant threats to the security of Earth's surface freshwaters. In the United States, the Federal Water Pollution Control Act of 1972 (i.e., the Clean Water Act) requires that states report any waterbody that fails to meet applicable water quality standards. The problem is that for fresh waters impacted by cyanoHABs, no scientifically-based framework exists for making this designation. This study describes the development of a data-based framework using the Ohio waters of western Lake Erie as an exemplar for large lakes impacted by cyanoHABs. To address this designation for Ohio's open waters, the Ohio Environmental Protection Agency (EPA) assembled a group of academic, state and federal scientists to develop a framework that would determine the criteria for Ohio EPA to consider in deciding on a recreation use impairment designation due to cyanoHAB presence. Typically, the metrics are derived from on-lake monitoring programs, but for large, dynamic lakes such as Lake Erie, using criteria based on discrete samples is problematic. However, significant advances in remote sensing allows for the estimation of cyanoHAB biomass of an entire lake. Through multiple years of validation, we developed a framework to determine lake-specific criteria for designating a waterbody as impaired by cyanoHABs on an annual basis. While the criteria reported in this manuscript are specific to Ohio's open waters, the framework used to determine them can be applied to any large lake where long-term monitoring data and satellite imagery are available.

摘要

有毒蓝藻水华(cyanoHABs)是对地球地表水安全的最大威胁之一。在美国,1972 年的《联邦水污染控制法》(即《清洁水法》)要求各州报告任何未能达到适用水质标准的水体。问题是,对于受到 cyanoHABs 影响的淡水,没有基于科学的框架来进行这种指定。本研究描述了一种基于数据的框架的开发,该框架以受 cyanoHABs 影响的大湖——伊利湖西部的俄亥俄水域为例。为了解决俄亥俄州开阔水域的这一指定问题,美国俄亥俄州环境保护局(Ohio EPA)召集了一批学术、州和联邦科学家,制定了一个框架,该框架将确定 Ohio EPA 在决定因 cyanoHAB 存在而对娱乐用途造成损害的指定标准时应考虑的标准。通常,这些指标是从湖上监测计划中得出的,但对于像伊利湖这样的大型、动态湖泊,使用基于离散样本的标准是有问题的。然而,遥感技术的重大进步使得对整个湖泊的 cyanoHAB 生物量进行估计成为可能。经过多年的验证,我们开发了一个框架,以确定每年将水体指定为因 cyanoHABs 而受损的特定湖泊标准。虽然本报告中报告的标准是针对俄亥俄州的开阔水域,但用于确定这些标准的框架可以应用于任何拥有长期监测数据和卫星图像的大型湖泊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验