Suppr超能文献

采用响应面法和人工神经网络优化和建模南极假丝酵母脂肪酶 B 催化ε-己内酯聚合制备聚己内酯。

Optimization and modelling of enzymatic polymerization of ε-caprolactone to polycaprolactone using Candida Antartica Lipase B with response surface methodology and artificial neural network.

机构信息

Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.

Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.

出版信息

Enzyme Microb Technol. 2019 Mar;122:7-18. doi: 10.1016/j.enzmictec.2018.12.001. Epub 2018 Dec 5.

Abstract

Recently enzymatic catalysts have replaced organic and organometallic catalysts in the synthesis of bio-resorbable polymers. Enzymatic polymerization is considered as an alternative to conventional polymerization as they are less toxic, environmental friendly and can operate under mild conditions. In this research, the enzymatic ring-opening polymerization (e-ROP) of e-caprolactone (e-CL) using Candida Antartica Lipase B (CALB) as catalyst to produce the Polycaprolactone. Two modelling techniques namely response surface methodology (RSM) and artificial neural network (ANN) have been used in this work. RSM is used to optimize the parameters and to develop a model of the process. ANN is used to develop the model to predict the results obtained from the experiment. The parameters involved are time, reaction temperature, mixing speed and enzyme-solvent ratio. The experimental result is Polydispersity index (PDI) of the polymer. The experimental data obtained was adequately fitted into second-order polynomial models. Simulation was done using artificial neural network model developed with Mean absolute error (MAD) value of 1.65 in comparison with MAD value of 7.4 for RSM. The Regression value (R) values of RSM and ANN were found to be 0.96 and 0.93 respectively. The predictive models were validated experimentally and were found to be in agreement with the experimental values.

摘要

最近,酶催化剂已经在生物可吸收聚合物的合成中取代了有机和有机金属催化剂。与传统聚合相比,酶聚合被认为是一种替代方法,因为它们的毒性更低、对环境更友好,并且可以在温和的条件下进行。在这项研究中,使用 Candida Antartica Lipase B(CALB)作为催化剂,通过酶开环聚合(e-ROP)对 ε-己内酯(e-CL)进行聚合,以生产聚己内酯。本工作中使用了两种建模技术,即响应面法(RSM)和人工神经网络(ANN)。RSM 用于优化参数并开发过程模型。ANN 用于开发模型以预测实验获得的结果。涉及的参数有时间、反应温度、混合速度和酶-溶剂比。实验结果是聚合物的多分散指数(PDI)。获得的实验数据充分拟合了二阶多项式模型。使用人工神经网络模型进行模拟,该模型的平均绝对误差(MAD)值为 1.65,而 RSM 的 MAD 值为 7.4。RSM 和 ANN 的回归值(R)分别为 0.96 和 0.93。预测模型经过实验验证,与实验值一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验