Suppr超能文献

基于qpAdm的基因混合筛选在图状历史和踏脚石景观上的表现。

Performance of qpAdm-based screens for genetic admixture on graph-shaped histories and stepping stone landscapes.

作者信息

Flegontova Olga, Işıldak Ulaş, Yüncü Eren, Williams Matthew P, Huber Christian D, Kočí Jan, Vyazov Leonid A, Changmai Piya, Flegontov Pavel

机构信息

Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia.

Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czechia.

出版信息

Genetics. 2025 May 8;230(1). doi: 10.1093/genetics/iyaf047.

Abstract

qpAdm is a statistical tool that is often used for testing large sets of alternative admixture models for a target population. Despite its popularity, qpAdm remains untested on 2D stepping stone landscapes and in situations with low prestudy odds (low ratio of true to false models). We tested high-throughput qpAdm protocols with typical properties such as number of source combinations per target, model complexity, model feasibility criteria, etc. Those protocols were applied to admixture graph-shaped and stepping stone simulated histories sampled randomly or systematically. We demonstrate that false discovery rates of high-throughput qpAdm protocols exceed 50% for many parameter combinations since: (1) prestudy odds are low and fall rapidly with increasing model complexity; (2) complex migration networks violate the assumptions of the method; hence, there is poor correlation between qpAdm P-values and model optimality, contributing to low but nonzero false-positive rate and low power; and (3) although admixture fraction estimates between 0 and 1 are largely restricted to symmetric configurations of sources around a target, a small fraction of asymmetric highly nonoptimal models have estimates in the same interval, contributing to the false-positive rate. We also reinterpret large sets of qpAdm models from 2 studies in terms of source-target distance and symmetry and suggest improvements to qpAdm protocols: (1) temporal stratification of targets and proxy sources in the case of admixture graph-shaped histories, (2) focused exploration of few models for increasing prestudy odds; and (3) dense landscape sampling for increasing power and stringent conditions on estimated admixture fractions for decreasing the false-positive rate.

摘要

qpAdm是一种统计工具,常用于测试针对目标人群的大量替代混合模型。尽管它很受欢迎,但qpAdm在二维踏脚石景观以及预研究几率较低(真模型与假模型的比例较低)的情况下仍未经过测试。我们测试了具有典型属性(如每个目标的源组合数量、模型复杂性、模型可行性标准等)的高通量qpAdm协议。这些协议被应用于随机或系统采样的混合图形状和踏脚石模拟历史。我们证明,对于许多参数组合,高通量qpAdm协议的错误发现率超过50%,原因如下:(1)预研究几率较低,且随着模型复杂性的增加而迅速下降;(2)复杂的迁移网络违反了该方法的假设;因此,qpAdm P值与模型最优性之间的相关性较差,导致假阳性率较低但不为零且功效较低;(3)尽管0到1之间的混合比例估计在很大程度上仅限于目标周围源的对称配置,但一小部分不对称的高度非最优模型在相同区间内也有估计,这也导致了假阳性率。我们还根据源-目标距离和对称性重新解释了两项研究中的大量qpAdm模型,并提出了对qpAdm协议的改进建议:(1)在混合图形状历史的情况下,对目标和代理源进行时间分层;(2)集中探索少数模型以提高预研究几率;(3)进行密集景观采样以提高功效,并对估计的混合比例设置严格条件以降低假阳性率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03ae/12118350/4aadf2d1aa36/iyaf047f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验