Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.
Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.
ACS Nano. 2019 Feb 26;13(2):1751-1763. doi: 10.1021/acsnano.8b07830. Epub 2019 Jan 17.
Desmoplastic tumors are normally resistant to nanoparticle-based chemotherapy due to dense stroma and limited particle permeability inside the tumor. Herein, we reported that hydralazine (HDZ)-an antihypertension vasodilator-would dramatically promote nanoparticle penetration in advanced desmoplastic tumors. First, a HDZ-liposome system was developed for tumor-selective delivery of HDZ. After three injections of HDZ-liposomes at a dose of 15 mg/kg, the tumor stroma was remarkably reduced, along with ameliorated tumor hypoxia in murine models of desmoplastic melanoma (BPD6). Furthermore, HDZ-liposome treatment altered the immunosuppressive tumor microenvironment, which provided opportunities for applying this therapeutic system to aid immunotherapy in desmoplastic tumors. Using DiD-loaded liposome as a model nanoparticle, we showed that HDZ-liposome treatment significantly increased nanoparticle accumulation and penetration inside desmoplastic tumors. As a result, one single injection of doxorubicin-liposomes at a dose of 5 mg/kg resulted in strong tumor inhibition effect after HDZ-liposome pretreatment in the advanced desmoplastic melanoma with sizes over 400 mm. Because HDZ is a widely used antihypertension drug, the findings here should be readily translatable for clinical benefits.
促渗剂原用于治疗高血压,有望改善致密肿瘤乏氧微环境并增强纳米递药疗效