Suppr超能文献

循环游离 DNA 在乳腺癌中的应用:大小分析、水平和甲基化模式可用于预后和预测分类器。

Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers.

机构信息

Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece.

Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece.

出版信息

Oncogene. 2019 May;38(18):3387-3401. doi: 10.1038/s41388-018-0660-y. Epub 2019 Jan 14.

Abstract

Blood circulating cell-free DNA (ccfDNA) is a suggested biosource of valuable clinical information for cancer, meeting the need for a minimally-invasive advancement in the route of precision medicine. In this paper, we evaluated the prognostic and predictive potential of ccfDNA parameters in early and advanced breast cancer. Groups consisted of 150 and 16 breast cancer patients under adjuvant and neoadjuvant therapy respectively, 34 patients with metastatic disease and 35 healthy volunteers. Direct quantification of ccfDNA in plasma revealed elevated concentrations correlated to the incidence of death, shorter PFS, and non-response to pharmacotherapy in the metastatic but not in the other groups. The methylation status of a panel of cancer-related genes chosen based on previous expression and epigenetic data (KLK10, SOX17, WNT5A, MSH2, GATA3) was assessed by quantitative methylation-specific PCR. All but the GATA3 gene was more frequently methylated in all the patient groups than in healthy individuals (all p < 0.05). The methylation of WNT5A was statistically significantly correlated to greater tumor size and poor prognosis characteristics and in advanced stage disease with shorter OS. In the metastatic group, also SOX17 methylation was significantly correlated to the incidence of death, shorter PFS, and OS. KLK10 methylation was significantly correlated to unfavorable clinicopathological characteristics and relapse, whereas in the adjuvant group to shorter DFI. Methylation of at least 3 or 4 genes was significantly correlated to shorter OS and no pharmacotherapy response, respectively. Classification analysis by a fully automated, machine learning software produced a single-parametric linear model using ccfDNA plasma concentration values, with great discriminating power to predict response to chemotherapy (AUC 0.803, 95% CI [0.606, 1.000]) in the metastatic group. Two more multi-parametric signatures were produced for the metastatic group, predicting survival and disease outcome. Finally, a multiple logistic regression model was constructed, discriminating between patient groups and healthy individuals. Overall, ccfDNA emerged as a highly potent predictive classifier in metastatic breast cancer. Upon prospective clinical evaluation, all the signatures produced could aid accurate prognosis.

摘要

循环细胞游离 DNA(ccfDNA)是一种有价值的临床信息生物来源,可满足精准医学微创进展的需要。在本文中,我们评估了 ccfDNA 参数在早期和晚期乳腺癌中的预后和预测潜力。组 1 由 150 名接受辅助和新辅助治疗的乳腺癌患者和 16 名乳腺癌患者组成,组 2 由 34 名转移性疾病患者和 35 名健康志愿者组成。直接定量检测血浆中的 ccfDNA 显示,升高的浓度与死亡发生率、较短的无进展生存期(PFS)以及转移性疾病而非其他组中对药物治疗的无反应相关。基于先前的表达和表观遗传数据选择的一组与癌症相关基因(KLK10、SOX17、WNT5A、MSH2、GATA3)的甲基化状态通过定量甲基化特异性 PCR 进行评估。除 GATA3 基因外,所有患者组的基因甲基化频率均高于健康个体(均 p<0.05)。WNT5A 的甲基化与更大的肿瘤大小和不良预后特征相关,在晚期疾病中与较短的总生存期(OS)相关。在转移性疾病组中,SOX17 甲基化也与死亡率、较短的 PFS 和 OS 显著相关。KLK10 甲基化与不良临床病理特征和复发相关,而在辅助治疗组中与较短的无病生存期(DFS)相关。至少 3 个或 4 个基因的甲基化与较短的 OS 和无药物治疗反应显著相关。使用 ccfDNA 血浆浓度值,通过完全自动化的机器学习软件进行分类分析,生成一个单参数线性模型,具有很强的区分能力,可预测转移性疾病组对化疗的反应(AUC 0.803,95%CI [0.606,1.000])。为转移性疾病组生成了另外两个多参数特征,可预测生存和疾病结果。最后,构建了一个多元逻辑回归模型,可区分患者组和健康个体。总的来说,ccfDNA 是转移性乳腺癌中一种非常有效的预测分类器。在进行前瞻性临床评估后,所有生成的特征都可以帮助进行准确的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验