Suppr超能文献

识别伊朗人群中不健康饮食习惯模式:一项潜在类别分析。

Identifying the pattern of unhealthy dietary habits among an Iranian population: A latent class analysis.

作者信息

Gholami Ali, Sohrabi Masoudreza, Abbasi-Ghahramanloo Abbas, Moradpour Farhad, Safiri Saeid, Maadi Mansooreh, Khazaee-Pool Maryam, Ghanbari Ali, Zamani Farhad

机构信息

Department of Public Health, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.

Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Med J Islam Repub Iran. 2018 Aug 10;32:69. doi: 10.14196/mjiri.32.69. eCollection 2018.

Abstract

An unhealthy diet is one of the most important risk factors for chronic diseases. The goal of this study was to use the latent class analysis (LCA) modeling to define unhealthy diet habits among an Iranian population. This cross-sectional study was conducted within the framework of Amol (North of Iran) cohort health study (Phase 1). The participants aged 10 to 90 years. All participants provided written informed consent. Latent class analysis was used to classify the participants of the study. All analyses were conducted by PROC LCA in SAS 9.2 software. Significance level was set at 0.05. The mean age of the participants was 42.58±17.23 years. Four classes of individuals with different diet habits were identified using LCA modeling: class 1: individuals with healthy diet patterns (92.6%); class 2: individuals with slightly unhealthy diet habits (6.3%); class 3: individuals with relatively unhealthy diet habits (0.8%); and class 4: individuals with unhealthy diet habits (0.2%). Being female and alcohol consumption increased the odds of membership in latent classes 2,3, and 4 compared to class 1. Physical activity decreased the odds of membership in classes 3 and 4 compared to class 1. Overall, almost more than 7.4% of all participants had some degree of unhealthy dietary habits, and some variables acted as risk factors for membership in risky classes. Therefore, focusing on these variables may help design and execute effective preventive interventions in groups with unhealthy dietary habits.

摘要

不健康饮食是慢性病最重要的风险因素之一。本研究的目的是使用潜在类别分析(LCA)模型来界定伊朗人群中的不健康饮食习惯。这项横断面研究是在阿莫勒(伊朗北部)队列健康研究(第一阶段)的框架内进行的。参与者年龄在10至90岁之间。所有参与者均提供了书面知情同意书。潜在类别分析用于对研究参与者进行分类。所有分析均在SAS 9.2软件中使用PROC LCA进行。显著性水平设定为0.05。参与者的平均年龄为42.58±17.23岁。使用LCA模型确定了四类饮食习惯不同的个体:第1类:具有健康饮食模式的个体(92.6%);第2类:具有轻度不健康饮食习惯的个体(6.3%);第3类:具有相对不健康饮食习惯的个体(0.8%);第4类:具有不健康饮食习惯的个体(0.2%)。与第1类相比,女性和饮酒增加了属于第2、3和4类潜在类别的几率。与第1类相比,身体活动降低了属于第3类和第4类的几率。总体而言,所有参与者中几乎超过7.4%有某种程度的不健康饮食习惯,一些变量是属于风险类别的风险因素。因此,关注这些变量可能有助于针对有不健康饮食习惯的群体设计和实施有效的预防干预措施。

相似文献

4
Identification and prediction of latent classes of weight-loss strategies among women.女性减肥策略潜在类别识别与预测。
Obesity (Silver Spring). 2010 Apr;18(4):833-40. doi: 10.1038/oby.2009.275. Epub 2009 Aug 20.
5
Patterns of dietary habits in relation to obesity in Iranian adults.伊朗成年人饮食习惯与肥胖的关系模式。
Eur J Nutr. 2016 Mar;55(2):713-728. doi: 10.1007/s00394-015-0891-4. Epub 2015 Apr 2.

引用本文的文献

本文引用的文献

8
Alcohol, violence, and the media.
Acta Psychiatr Scand. 2012 Jul;126(1):81-2. doi: 10.1111/j.1600-0447.2012.01877.x. Epub 2012 Jun 6.
9
[Alcohol and violence: a current review].[酒精与暴力:当前综述]
Fortschr Neurol Psychiatr. 2012 Aug;80(8):441-9. doi: 10.1055/s-0031-1282018. Epub 2012 Mar 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验