Gholami Ali, Sohrabi Masoudreza, Abbasi-Ghahramanloo Abbas, Moradpour Farhad, Safiri Saeid, Maadi Mansooreh, Khazaee-Pool Maryam, Ghanbari Ali, Zamani Farhad
Department of Public Health, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
Med J Islam Repub Iran. 2018 Aug 10;32:69. doi: 10.14196/mjiri.32.69. eCollection 2018.
An unhealthy diet is one of the most important risk factors for chronic diseases. The goal of this study was to use the latent class analysis (LCA) modeling to define unhealthy diet habits among an Iranian population. This cross-sectional study was conducted within the framework of Amol (North of Iran) cohort health study (Phase 1). The participants aged 10 to 90 years. All participants provided written informed consent. Latent class analysis was used to classify the participants of the study. All analyses were conducted by PROC LCA in SAS 9.2 software. Significance level was set at 0.05. The mean age of the participants was 42.58±17.23 years. Four classes of individuals with different diet habits were identified using LCA modeling: class 1: individuals with healthy diet patterns (92.6%); class 2: individuals with slightly unhealthy diet habits (6.3%); class 3: individuals with relatively unhealthy diet habits (0.8%); and class 4: individuals with unhealthy diet habits (0.2%). Being female and alcohol consumption increased the odds of membership in latent classes 2,3, and 4 compared to class 1. Physical activity decreased the odds of membership in classes 3 and 4 compared to class 1. Overall, almost more than 7.4% of all participants had some degree of unhealthy dietary habits, and some variables acted as risk factors for membership in risky classes. Therefore, focusing on these variables may help design and execute effective preventive interventions in groups with unhealthy dietary habits.
不健康饮食是慢性病最重要的风险因素之一。本研究的目的是使用潜在类别分析(LCA)模型来界定伊朗人群中的不健康饮食习惯。这项横断面研究是在阿莫勒(伊朗北部)队列健康研究(第一阶段)的框架内进行的。参与者年龄在10至90岁之间。所有参与者均提供了书面知情同意书。潜在类别分析用于对研究参与者进行分类。所有分析均在SAS 9.2软件中使用PROC LCA进行。显著性水平设定为0.05。参与者的平均年龄为42.58±17.23岁。使用LCA模型确定了四类饮食习惯不同的个体:第1类:具有健康饮食模式的个体(92.6%);第2类:具有轻度不健康饮食习惯的个体(6.3%);第3类:具有相对不健康饮食习惯的个体(0.8%);第4类:具有不健康饮食习惯的个体(0.2%)。与第1类相比,女性和饮酒增加了属于第2、3和4类潜在类别的几率。与第1类相比,身体活动降低了属于第3类和第4类的几率。总体而言,所有参与者中几乎超过7.4%有某种程度的不健康饮食习惯,一些变量是属于风险类别的风险因素。因此,关注这些变量可能有助于针对有不健康饮食习惯的群体设计和实施有效的预防干预措施。