Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel.
Adv Mater. 2019 Mar;31(10):e1807285. doi: 10.1002/adma.201807285. Epub 2019 Jan 15.
Bacterial type IV pili (T4P) are polymeric protein nanofibers that have diverse biological roles. Their unique physicochemical properties mark them as a candidate biomaterial for various applications, yet difficulties in producing native T4P hinder their utilization. Recent effort to mimic the T4P of the metal-reducing Geobacter sulfurreducens bacterium led to the design of synthetic peptide building blocks, which self-assemble into T4P-like nanofibers. Here, it is reported that the T4P-like peptide nanofibers efficiently bind metal oxide particles and reduce Au ions analogously to their native counterparts, and thus give rise to versatile and multifunctional peptide-metal nanocomposites. Focusing on the interaction with Au ions, a combination of experimental and computational methods provides mechanistic insight into the formation of an exceptionally dense Au nanoparticle (AuNP) decoration of the nanofibers. Characterization of the thus-formed peptide-AuNPs nanocomposite reveals enhanced thermal stability, electrical conductivity from the single-fiber level up, and substrate-selective adhesion. Exploring its potential applications, it is demonstrated that the peptide-AuNPs nanocomposite can act as a reusable catalytic coating or form self-supporting immersible films of desired shapes. The films scaffold the assembly of cardiac cells into synchronized patches, and present static charge detection capabilities at the macroscale. The study presents a novel T4P-inspired biometallic material.
细菌 IV 型菌毛 (T4P) 是聚合蛋白纳米纤维,具有多种生物学功能。其独特的物理化学性质使它们成为各种应用的候选生物材料,但由于难以生产天然 T4P,限制了它们的应用。最近,人们试图模拟金属还原菌 Geobacter sulfurreducens 的 T4P,设计出了合成肽结构单元,这些结构单元可以自组装成类似 T4P 的纳米纤维。在这里,我们报告了这些类似 T4P 的肽纳米纤维可以有效地结合金属氧化物颗粒,并类似地还原 Au 离子,从而产生多功能的肽-金属纳米复合材料。研究重点是与 Au 离子的相互作用,实验和计算方法的结合为纳米纤维中异常致密的 Au 纳米颗粒 (AuNP) 形成提供了机制见解。对形成的肽-AuNP 纳米复合材料进行了表征,发现其热稳定性增强、从单纤维水平提高了导电性,并且具有底物选择性的粘附性。探索其潜在应用表明,肽-AuNP 纳米复合材料可用作可重复使用的催化涂层,或者形成具有所需形状的自支撑可浸入式薄膜。这些薄膜可以将心脏细胞组装成同步斑块,并在宏观尺度上具有静态电荷检测能力。该研究提出了一种新型的 T4P 启发型生物金属材料。