Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (J.K., B.S., S.Z., G.S., E.S.-B.).
Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Germany (M.G., S.R., N.D.).
Circ Genom Precis Med. 2019 Jan;12(1):e002238. doi: 10.1161/CIRCGEN.118.002238.
Inherited forms of sinus node dysfunction (SND) clinically include bradycardia, sinus arrest, and chronotropic incompetence and may serve as disease models to understand sinus node physiology and impulse generation. Recently, a gain-of-function mutation in the G-protein gene GNB2 led to enhanced activation of the GIRK (G-protein activated inwardly rectifying K channel). Thus, human cardiac GIRK channels are important for heart rate regulation and subsequently, genes encoding their subunits Kir3.1 and Kir3.4 ( KCNJ3 and KCNJ5) are potential candidates for inherited SND in human.
We performed a combined approach of targeted sequencing of KCNJ3 and KCNJ5 in 52 patients with idiopathic SND and subsequent whole exome sequencing of additional family members in a genetically affected patient. A putative novel disease-associated gene variant was functionally analyzed by voltage-clamp experiments using various heterologous cell expression systems (Xenopus oocytes, CHO cells, and rat atrial cardiomyocytes).
In a 3-generation family with SND we identified a novel variant in KCNJ5 which leads to an amino acid substitution (p.Trp101Cys) in the first transmembrane domain of the Kir3.4 subunit of the cardiac GIRK channel. The identified variant cosegregated with the disease in the family and was absent in the Exome Variant Server and Exome Aggregation Consortium databases. Expression of mutant Kir3.4 (±native Kir3.1) in different heterologous cell expression systems resulted in increased GIRK currents ( I) and a reduced inward rectification which was not compensated by intracellular spermidine. Moreover, in silico modeling of heterotetrameric mutant GIRK channels indicates a structurally altered binding site for spermine.
For the first time, an inherited gain-of-function mutation in the human GIRK3.4 causes familial human SND. The increased activity of GIRK channels is likely to lead to a sustained hyperpolarization of pacemaker cells and thereby reduces heart rate. Modulation of human GIRK channels may pave a way for further treatment of cardiac pacemaking.
遗传性窦房结功能障碍(SND)的临床表现包括心动过缓、窦性停搏和变时功能不全,可作为研究窦房结生理学和冲动产生的疾病模型。最近,G 蛋白基因 GNB2 的功能获得性突变导致 GIRK(G 蛋白激活内向整流钾通道)的激活增强。因此,人类心脏 GIRK 通道对心率调节很重要,随后,编码其亚基 Kir3.1 和 Kir3.4(KCNJ3 和 KCNJ5)的基因成为人类遗传性 SND 的潜在候选基因。
我们对 52 名特发性 SND 患者的 KCNJ3 和 KCNJ5 进行了靶向测序,并对 1 名遗传受累患者的其他家族成员进行了全外显子组测序。通过使用各种异源细胞表达系统(非洲爪蟾卵母细胞、CHO 细胞和大鼠心房心肌细胞)的电压钳实验对推定的新疾病相关基因变异进行了功能分析。
在一个患有 SND 的 3 代家族中,我们发现 KCNJ5 中的一个新变异导致心脏 GIRK 通道 Kir3.4 亚基的第一跨膜结构域中的氨基酸替换(p.Trp101Cys)。该变异与家族中的疾病共分离,且不存在于 Exome Variant Server 和 Exome Aggregation Consortium 数据库中。在不同异源细胞表达系统中表达突变型 Kir3.4(±天然 Kir3.1)会导致 GIRK 电流(I)增加和内向整流减少,这不能通过细胞内 spermidine 来补偿。此外,异四聚体突变型 GIRK 通道的计算机建模表明 spermine 的结合位点发生了结构改变。
首次在人类 GIRK3.4 中发现遗传性功能获得性突变导致家族性人类 SND。GIRK 通道的活性增加可能导致起搏细胞持续超极化,从而降低心率。对人类 GIRK 通道的调节可能为心脏起搏的进一步治疗铺平道路。