Departments of Cardiovascular Medicine (N.Y., Y.A., A.T., H. Kioka, Y.M., H.S., Y.S.), Osaka University Graduate School of Medicine, Suita, Japan.
Department of Onco-cardiology, Osaka International Cancer Institute, Japan (M.F.).
Circulation. 2019 Apr 30;139(18):2157-2169. doi: 10.1161/CIRCULATIONAHA.118.036761.
Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life.
We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model.
We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( I channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of I channel function by increasing the basal current, even in the absence of m muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective I channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish.
The I channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant I channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective I channel blocker. Thus, the I channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the I channel.
心动过缓是一种常见的临床症状。尽管大多数情况下是后天获得的,但对有心动过缓家族的基因分析已经发现越来越多的致病基因突变。由于治疗有症状心动过缓的唯一最终方法是侵入性手术植入起搏器,因此有必要发现新的治疗分子靶点,以改善预后和生活质量。
我们研究了一个包含 7 名个体的家族,这些个体患有窦房结功能障碍、房颤伴心室反应缓慢和房室传导阻滞的常染色体显性心动过缓。为了确定致病突变,我们进行了基于家族的全外显子组测序和全基因组连锁分析。我们根据体外病理生理学特征对突变相关机制进行了表征。在生成一种转基因动物模型以确认心动过缓的人类表型后,我们还使用该动物模型评估了一种新鉴定的靶向分子化合物上调心动过缓时心率的疗效。
我们发现一个杂合突变,KCNJ3 c.247A>C,p.N83H,是该家族遗传性心动过缓的一个新病因。KCNJ3 编码内向整流钾通道 Kir3.1,与 Kir3.4(由 KCNJ5 编码)结合形成在心房中具有特异性表达的乙酰胆碱激活钾通道(I 通道)。对 2185 名散发性房颤患者的基因组队列进行的进一步研究发现了 KCNJ3 和 KCNJ5 中的另外 5 个罕见突变,提示这两个基因与这些心律失常有关。细胞电生理研究表明,KCNJ3 p.N83H 突变通过增加基础电流导致 I 通道功能获得,即使在没有 m 毒蕈碱受体刺激的情况下也是如此。我们专门在心房中生成了表达突变型人 KCNJ3 的转基因斑马鱼。有趣的是,选择性 I 通道阻滞剂 NIP-151 抑制了突变斑马鱼中增加的电流并改善了心动过缓表型。
I 通道与心动过缓和房颤的病理生理学有关,突变的 I 通道(KCNJ3 p.N83H)可被选择性 I 通道阻滞剂 NIP-151 有效抑制。因此,I 通道可能被认为是具有 I 通道功能获得性突变的心动过缓患者的合适药理学靶点。