Papini Shahar, Yafin Peretz, Klapp Iftach, Sochen Nir
Appl Opt. 2018 Dec 20;57(36):10390-10401. doi: 10.1364/AO.57.010390.
Low cost, weight, and size microbolometer-based thermal focal plane arrays are attractive for thermal-imaging applications. Under environmental loads like those in agricultural remote sensing, these cameras tend to suffer from drift in gain and offset with time and thus require constant calibration. Our goal is to skip this step via computational imaging. In a previous work we estimated the unknown offset value and radiometric image of an object, given the calibrated gain, from a pair of successive images taken at two different blur levels, eliminating the need for offset calibration due to temperature variation. Here, we extend our model to a case with unknown gain and offset. We show that these values, as well as the objects' radiometric value, can be found jointly by minimizing a cost function relying on N pairs of blurred and sharp images. The method addresses both space-invariant and space-variant cases. Simulations show promising accuracy with error characterized by root mean squared error of less than 1.6°C.
低成本、低重量和小尺寸的基于微测辐射热计的热成像焦平面阵列在热成像应用中颇具吸引力。在诸如农业遥感中的环境负荷条件下,这些相机往往会随着时间推移而出现增益和偏移漂移,因此需要持续校准。我们的目标是通过计算成像跳过这一步骤。在之前的一项工作中,我们在已知校准增益的情况下,根据在两个不同模糊水平下拍摄的一对连续图像,估计出物体的未知偏移值和辐射图像,从而消除了因温度变化而进行偏移校准的需求。在此,我们将模型扩展到增益和偏移均未知的情况。我们表明,通过最小化一个依赖于N对模糊和清晰图像的代价函数,可以联合找到这些值以及物体的辐射值。该方法适用于空间不变和空间变化的情况。模拟结果显示出有前景的精度,误差以均方根误差小于1.6°C为特征。