Oz Navot, Berman Omri, Sochen Nir, Mendlovic David, Klapp Iftach
IEEE Trans Image Process. 2024;33:5246-5259. doi: 10.1109/TIP.2024.3458861. Epub 2024 Sep 25.
IR cameras are widely used for temperature measurements in various applications, including agriculture, medicine, and security. Low-cost IR cameras have the immense potential to replace expensive radiometric cameras in these applications; however, low-cost microbolometer-based IR cameras are prone to spatially variant nonuniformity and to drift in temperature measurements, which limit their usability in practical scenarios. To address these limitations, we propose a novel approach for simultaneous temperature estimation and nonuniformity correction (NUC) from multiple frames captured by low-cost microbolometer-based IR cameras. We leverage the camera's physical image-acquisition model and incorporate it into a deep-learning architecture termed kernel prediction network (KPN), which enables us to combine multiple frames despite imperfect registration between them. We also propose a novel offset block that incorporates the ambient temperature into the model and enables us to estimate the offset of the camera, which is a key factor in temperature estimation. Our findings demonstrate that the number of frames has a significant impact on the accuracy of the temperature estimation and NUC. Moreover, introduction of the offset block results in significantly improved performance compared to vanilla KPN. The method was tested on real data collected by a low-cost IR camera mounted on an unmanned aerial vehicle, showing only a small average error of 0.27-0.54 C relative to costly scientific-grade radiometric cameras. Real data collected horizontally resulted in similar errors of 0.48-0.68 C . Our method provides an accurate and efficient solution for simultaneous temperature estimation and NUC, which has important implications for a wide range of practical applications.
红外摄像机广泛应用于包括农业、医学和安全在内的各种温度测量应用中。低成本红外摄像机在这些应用中具有巨大潜力,可替代昂贵的辐射热成像摄像机;然而,基于微测辐射热计的低成本红外摄像机容易出现空间变化的不均匀性以及温度测量漂移,这限制了它们在实际场景中的可用性。为了解决这些限制,我们提出了一种新颖的方法,用于从基于微测辐射热计的低成本红外摄像机捕获的多帧图像中同时进行温度估计和非均匀性校正(NUC)。我们利用相机的物理图像采集模型,并将其纳入一个称为内核预测网络(KPN)的深度学习架构中,这使我们能够在帧之间配准不完善的情况下组合多帧图像。我们还提出了一种新颖的偏移块,将环境温度纳入模型,并使我们能够估计相机的偏移量,这是温度估计中的一个关键因素。我们的研究结果表明,帧数对温度估计和NUC的准确性有重大影响。此外,与普通KPN相比,引入偏移块可显著提高性能。该方法在安装在无人机上的低成本红外摄像机收集的真实数据上进行了测试,相对于昂贵的科学级辐射热成像摄像机,平均误差仅为0.27 - 0.54摄氏度。水平收集的真实数据产生了类似的0.48 - 0.68摄氏度的误差。我们的方法为同时进行温度估计和NUC提供了一种准确有效的解决方案,这对广泛的实际应用具有重要意义。