Suppr超能文献

多光谱频率选择性中红外微测辐射热计。

Multi-spectral frequency selective mid-infrared microbolometers.

作者信息

Safaei Alireza, Modak Sushrut, Lee Jonathan, Chandra Sayan, Franklin Daniel, Vázquez-Guardado Abraham, Chanda Debashis

出版信息

Opt Express. 2018 Dec 10;26(25):32931-32940. doi: 10.1364/OE.26.032931.

Abstract

Frequency selective detection of low energy photons is a scientific challenge using natural materials. A hypothetical surface which functions like a light funnel with very low thermal mass in order to enhance photon collection and suppress background thermal noise is the ideal solution to address both low temperature and frequency selective detection limitations of present detection systems. Here, we present a cavity-coupled quasi-three dimensional plasmonic crystal which induces impedance matching to the free space giving rise to extraordinary transmission through the sub-wavelength aperture array like a "light funnel" in coupling low energy incident photons resulting in frequency selective perfect (~100%) absorption of the incident radiation and zero back reflection. The peak wavelength of absorption of the incident light is almost independent of the angle of incidence and remains within 20% of its maximum (100%) up to θ≤45˚. This perfect absorption results from the incident light-driven localized edge "micro-plasma" currents on the lossy metallic surfaces. The wide-angle light funneling is validated with experimental measurements. Further, a super-lattice based electronic biasing circuit converts the absorbed narrow linewidth (/< 0.075) photon energy inside the sub-wavelength thick film (< λ/100) to voltage output with high signal to noise ratio close to the theoretical limit. Such artificial plasmonic surfaces enable flexible scaling of light funneling response to any wavelength range by simple dimensional changes paving the path towards room temperature frequency selective low energy photon detection.

摘要

利用天然材料对低能光子进行频率选择性探测是一项科学挑战。一种假设的表面,其功能类似于具有极低热质量的光漏斗,以增强光子收集并抑制背景热噪声,是解决当前探测系统低温和频率选择性探测局限性的理想解决方案。在此,我们展示了一种腔耦合准三维等离子体晶体,它能与自由空间实现阻抗匹配,从而通过亚波长孔径阵列产生非凡的透射,就像一个“光漏斗”,在耦合低能入射光子时,导致入射辐射的频率选择性完美(~100%)吸收且零背反射。入射光吸收的峰值波长几乎与入射角无关,在θ≤45˚时,其吸收峰值保持在最大值(100%)的20%以内。这种完美吸收源于入射光驱动的有损金属表面上的局域边缘“微等离子体”电流。通过实验测量验证了广角光漏斗效应。此外,基于超晶格的电子偏置电路将亚波长厚膜(<λ/100)内吸收的窄线宽(/<0.075)光子能量转换为具有接近理论极限的高信噪比的电压输出。这种人工等离子体表面通过简单的尺寸变化就能灵活调整光漏斗响应至任何波长范围,为室温频率选择性低能光子探测铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验