Zhu Linxiao, Liu Fengyuan, Lin Hongtao, Hu Juejun, Yu Zongfu, Wang Xinran, Fan Shanhui
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Light Sci Appl. 2016 Mar 25;5(3):e16052. doi: 10.1038/lsa.2016.52. eCollection 2016 Mar.
Two-dimensional (2D) materials have great potential in photonic and optoelectronic devices. However, the relatively weak light absorption in 2D materials hinders their application in practical devices. Here, we propose a general approach to achieve angle-selective perfect light absorption in 2D materials. As a demonstration of the concept, we experimentally show giant light absorption by placing large-area single-layer graphene on a structure consisting of a chalcogenide layer atop a mirror and achieving a total absorption of 77.6% in the mid-infrared wavelength range (~13 μm), where the graphene contributes a record-high 47.2% absorptivity of mid-infrared light. Construction of such an angle-selective thin optical element is important for solar and thermal energy harvesting, photo-detection and sensing applications. Our study points to a new opportunity to combine 2D materials with photonic structures to enable novel device applications.
二维(2D)材料在光子和光电器件方面具有巨大潜力。然而,二维材料中相对较弱的光吸收阻碍了它们在实际器件中的应用。在此,我们提出一种通用方法来实现二维材料中的角度选择性完美光吸收。作为该概念的一个例证,我们通过将大面积单层石墨烯放置在由位于镜子上方的硫族化物层组成的结构上,实验展示了巨大的光吸收,并在中红外波长范围(~13μm)实现了77.6%的总吸收,其中石墨烯对中红外光的吸收率达到创纪录的47.2%。构建这样一个角度选择性薄光学元件对于太阳能和热能收集、光探测及传感应用而言至关重要。我们的研究指出了将二维材料与光子结构相结合以实现新型器件应用的新机遇。