Division of General Internal Medicine, Duke University School of Medicine, Durham, North Carolina.
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina.
JAMA Netw Open. 2018 Sep 7;1(5):e182716. doi: 10.1001/jamanetworkopen.2018.2716.
Data from electronic health records (EHRs) are increasingly used for risk prediction. However, EHRs do not reliably collect sociodemographic and neighborhood information, which has been shown to be associated with health. The added contribution of neighborhood socioeconomic status (nSES) in predicting health events is unknown and may help inform population-level risk reduction strategies.
To quantify the association of nSES with adverse outcomes and the value of nSES in predicting the risk of adverse outcomes in EHR-based risk models.
DESIGN, SETTING, AND PARTICIPANTS: Cohort study in which data from 90 097 patients 18 years or older in the Duke University Health System and Lincoln Community Health Center EHR from January 1, 2009, to December 31, 2015, with at least 1 health care encounter and residence in Durham County, North Carolina, in the year prior to the index date were linked with census tract data to quantify the association between nSES and the risk of adverse outcomes. Machine learning methods were used to develop risk models and determine how adding nSES to EHR data affects risk prediction. Neighborhood socioeconomic status was defined using the Agency for Healthcare Research and Quality SES index, a weighted measure of multiple indicators of neighborhood deprivation.
Outcomes included use of health care services (emergency department and inpatient and outpatient encounters) and hospitalizations due to accidents, asthma, influenza, myocardial infarction, and stroke.
Among the 90 097 patients in the training set of the study (57 507 women and 32 590 men; mean [SD] age, 47.2 [17.7] years) and the 122 812 patients in the testing set of the study (75 517 women and 47 295 men; mean [SD] age, 46.2 [17.9] years), those living in neighborhoods with lower nSES had a shorter time to use of emergency department services and inpatient encounters, as well as a shorter time to hospitalizations due to accidents, asthma, influenza, myocardial infarction, and stroke. The predictive value of nSES varied by outcome of interest (C statistic ranged from 0.50 to 0.63). When added to EHR variables, nSES did not improve predictive performance for any health outcome.
Social determinants of health, including nSES, are associated with the health of a patient. However, the results of this study suggest that information on nSES may not contribute much more to risk prediction above and beyond what is already provided by EHR data. Although this result does not mean that integrating social determinants of health into the EHR has no benefit, researchers may be able to use EHR data alone for population risk assessment.
电子健康记录(EHR)中的数据越来越多地用于风险预测。然而,EHR 并不能可靠地收集社会人口统计学和邻里信息,这些信息已被证明与健康有关。邻里社会经济地位(nSES)在预测健康事件中的附加贡献尚不清楚,这可能有助于为人群层面的风险降低策略提供信息。
量化 nSES 与不良结局的关联,以及 nSES 在基于 EHR 的风险模型中预测不良结局风险的价值。
设计、地点和参与者:这项队列研究对 2009 年 1 月 1 日至 2015 年 12 月 31 日期间在杜克大学卫生系统和林肯社区卫生中心的 90097 名 18 岁或以上的患者进行了研究,这些患者至少有 1 次医疗就诊,且在索引日期前的前一年在北卡罗来纳州达勒姆县居住,他们的电子健康记录与普查区数据相关联,以量化 nSES 与不良结局风险之间的关联。使用机器学习方法开发风险模型,并确定将 nSES 添加到 EHR 数据中如何影响风险预测。邻里社会经济地位使用医疗保健研究和质量局 SES 指数来定义,这是衡量邻里贫困多种指标的加权指标。
结局包括使用医疗服务(急诊和住院及门诊就诊)和因事故、哮喘、流感、心肌梗死和中风住院。
在研究的训练集中有 90097 名患者(57507 名女性和 32590 名男性;平均[标准差]年龄为 47.2[17.7]岁)和研究的测试集中有 122812 名患者(75517 名女性和 47295 名男性;平均[标准差]年龄为 46.2[17.9]岁),生活在 nSES 较低的邻里的患者使用急诊服务和住院就诊的时间更短,因事故、哮喘、流感、心肌梗死和中风住院的时间也更短。nSES 的预测价值因感兴趣的结局而异(C 统计量范围为 0.50 至 0.63)。当添加到 EHR 变量中时,nSES 并不能提高任何健康结局的预测性能。
健康的社会决定因素,包括 nSES,与患者的健康有关。然而,这项研究的结果表明,邻里社会经济地位信息可能不会在 EHR 数据提供的信息之外对风险预测有太多贡献。尽管这一结果并不意味着将社会健康决定因素纳入 EHR 没有任何益处,但研究人员可能能够仅使用 EHR 数据进行人群风险评估。