Hatef Elham, Chang Hsien-Yen, Richards Thomas M, Kitchen Christopher, Budaraju Janya, Foroughmand Iman, Lasser Elyse C, Weiner Jonathan P
Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.
Center for Population Health Information Technology, Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
JMIR Form Res. 2024 Mar 12;8:e54732. doi: 10.2196/54732.
Patients with unmet social needs and social determinants of health (SDOH) challenges continue to face a disproportionate risk of increased prevalence of disease, health care use, higher health care costs, and worse outcomes. Some existing predictive models have used the available data on social needs and SDOH challenges to predict health-related social needs or the need for various social service referrals. Despite these one-off efforts, the work to date suggests that many technical and organizational challenges must be surmounted before SDOH-integrated solutions can be implemented on an ongoing, wide-scale basis within most US-based health care organizations.
We aimed to retrieve available information in the electronic health record (EHR) relevant to the identification of persons with social needs and to develop a social risk score for use within clinical practice to better identify patients at risk of having future social needs.
We conducted a retrospective study using EHR data (2016-2021) and data from the US Census American Community Survey. We developed a prospective model using current year-1 risk factors to predict future year-2 outcomes within four 2-year cohorts. Predictors of interest included demographics, previous health care use, comorbidity, previously identified social needs, and neighborhood characteristics as reflected by the area deprivation index. The outcome variable was a binary indicator reflecting the likelihood of the presence of a patient with social needs. We applied a generalized estimating equation approach, adjusting for patient-level risk factors, the possible effect of geographically clustered data, and the effect of multiple visits for each patient.
The study population of 1,852,228 patients included middle-aged (mean age range 53.76-55.95 years), White (range 324,279/510,770, 63.49% to 290,688/488,666, 64.79%), and female (range 314,741/510,770, 61.62% to 278,488/448,666, 62.07%) patients from neighborhoods with high socioeconomic status (mean area deprivation index percentile range 28.76-30.31). Between 8.28% (37,137/448,666) and 11.55% (52,037/450,426) of patients across the study cohorts had at least 1 social need documented in their EHR, with safety issues and economic challenges (ie, financial resource strain, employment, and food insecurity) being the most common documented social needs (87,152/1,852,228, 4.71% and 58,242/1,852,228, 3.14% of overall patients, respectively). The model had an area under the curve of 0.702 (95% CI 0.699-0.705) in predicting prospective social needs in the overall study population. Previous social needs (odds ratio 3.285, 95% CI 3.237-3.335) and emergency department visits (odds ratio 1.659, 95% CI 1.634-1.684) were the strongest predictors of future social needs.
Our model provides an opportunity to make use of available EHR data to help identify patients with high social needs. Our proposed social risk score could help identify the subset of patients who would most benefit from further social needs screening and data collection to avoid potentially more burdensome primary data collection on all patients in a target population of interest.
有未满足的社会需求以及面临健康的社会决定因素(SDOH)挑战的患者,在疾病患病率增加、医疗保健使用、更高的医疗保健成本以及更差的治疗结果方面,持续面临着不成比例的风险。一些现有的预测模型利用了关于社会需求和SDOH挑战的可用数据,来预测与健康相关的社会需求或各种社会服务转诊的需求。尽管有这些一次性的努力,但迄今为止的工作表明,在美国大多数医疗保健机构中,要在持续、广泛的基础上实施整合SDOH的解决方案,还必须克服许多技术和组织方面的挑战。
我们旨在检索电子健康记录(EHR)中与识别有社会需求的人相关的可用信息,并开发一种社会风险评分,用于临床实践,以更好地识别有未来社会需求风险的患者。
我们使用EHR数据(2016 - 2021年)和美国人口普查美国社区调查的数据进行了一项回顾性研究。我们开发了一个前瞻性模型,使用第1年的风险因素来预测四个2年队列中第2年的未来结果。感兴趣的预测因素包括人口统计学特征、以前的医疗保健使用情况、合并症、先前确定的社会需求以及由地区贫困指数反映的邻里特征。结果变量是一个二元指标,反映有社会需求患者存在的可能性。我们应用了广义估计方程方法,对患者层面的风险因素、地理聚类数据的可能影响以及每个患者多次就诊的影响进行了调整。
研究人群为1,852,228名患者,包括中年患者(平均年龄范围53.76 - 55.95岁)、白人(范围从324,279/510,770,63.49%到290,688/488,666,64.79%)以及女性患者(范围从314,741/510,770,61.62%到278,488/448,666,62.07%),来自社会经济地位较高的社区(平均地区贫困指数百分位数范围28.76 - 30.31)。在整个研究队列中,8.28%(37,137/448,666)至11.55%(52,037/450,42)的患者在其EHR中有至少1项社会需求记录,安全问题和经济挑战(即财务资源紧张、就业和粮食不安全)是记录中最常见的社会需求(分别占总体患者的87,152/1,852,228,4.71%和58,242/1,852,228,3.14%)。该模型在预测整个研究人群的前瞻性社会需求时,曲线下面积为0.702(95%CI 0.699 - 0.705)。先前的社会需求(优势比3.285,95%CI 3.237 - 3.335)和急诊科就诊(优势比1.659,95%CI 1.634 - 1.684)是未来社会需求的最强预测因素。
我们的模型提供了一个利用可用EHR数据来帮助识别有高社会需求患者的机会。我们提出的社会风险评分可以帮助识别那些将从进一步的社会需求筛查和数据收集中受益最大的患者子集,以避免在目标感兴趣人群中的所有患者身上进行潜在更繁重的原始数据收集。