Suppr超能文献

基于人工智能的初级保健中糖尿病视网膜病变分级评估。

Evaluation of Artificial Intelligence-Based Grading of Diabetic Retinopathy in Primary Care.

机构信息

Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Perth, Western Australia, Australia.

Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts.

出版信息

JAMA Netw Open. 2018 Sep 7;1(5):e182665. doi: 10.1001/jamanetworkopen.2018.2665.

Abstract

IMPORTANCE

There has been wide interest in using artificial intelligence (AI)-based grading of retinal images to identify diabetic retinopathy, but such a system has never been deployed and evaluated in clinical practice.

OBJECTIVE

To describe the performance of an AI system for diabetic retinopathy deployed in a primary care practice.

DESIGN, SETTING, AND PARTICIPANTS: Diagnostic study of patients with diabetes seen at a primary care practice with 4 physicians in Western Australia between December 1, 2016, and May 31, 2017. A total of 193 patients consented for the study and had retinal photographs taken of their eyes. Three hundred eighty-six images were evaluated by both the AI-based system and an ophthalmologist.

MAIN OUTCOMES AND MEASURES

Sensitivity and specificity of the AI system compared with the gold standard of ophthalmologist evaluation.

RESULTS

Of the 193 patients (93 [48%] female; mean [SD] age, 55 [17] years [range, 18-87 years]), the AI system judged 17 as having diabetic retinopathy of sufficient severity to require referral. The system correctly identified 2 patients with true disease and misclassified 15 as having disease (false-positives). The resulting specificity was 92% (95% CI, 87%-96%), and the positive predictive value was 12% (95% CI, 8%-18%). Many false-positives were driven by inadequate image quality (eg, dirty lens) and sheen reflections.

CONCLUSIONS AND RELEVANCE

The results demonstrate both the potential and the challenges of using AI systems to identify diabetic retinopathy in clinical practice. Key challenges include the low incidence rate of disease and the related high false-positive rate as well as poor image quality. Further evaluations of AI systems in primary care are needed.

摘要

重要性

人们对使用基于人工智能(AI)的视网膜图像分级来识别糖尿病视网膜病变产生了广泛的兴趣,但这种系统从未在临床实践中部署和评估过。

目的

描述在初级保健实践中部署的用于糖尿病视网膜病变的 AI 系统的性能。

设计、设置和参与者:这是一项在澳大利亚西部的一家初级保健诊所进行的患者诊断性研究,该诊所共有 4 名医生。研究时间为 2016 年 12 月 1 日至 2017 年 5 月 31 日,共纳入 193 名同意参与研究并接受眼部视网膜照片拍摄的糖尿病患者。共有 386 张图像由 AI 系统和眼科医生进行评估。

主要结局和措施

AI 系统与眼科医生评估的金标准相比的敏感性和特异性。

结果

在 193 名患者中(93 名[48%]为女性;平均[SD]年龄为 55[17]岁[范围为 18-87 岁]),AI 系统判断 17 名患者的糖尿病视网膜病变严重程度足以需要转诊。该系统正确识别出 2 名真正患有疾病的患者,并错误地将 15 名患者误诊为患有疾病(假阳性)。因此,特异性为 92%(95%CI,87%-96%),阳性预测值为 12%(95%CI,8%-18%)。许多假阳性是由图像质量差(如镜头脏污)和光泽反射引起的。

结论和相关性

结果表明,使用 AI 系统在临床实践中识别糖尿病视网膜病变具有潜在的可能性和挑战。主要挑战包括疾病的低发生率和相关的高假阳性率以及图像质量差。需要进一步在初级保健中评估 AI 系统。

相似文献

引用本文的文献

3
5
AI and Primary Care: Scoping Review.人工智能与初级保健:范围综述
J Med Internet Res. 2025 Aug 15;27:e65950. doi: 10.2196/65950.
10
Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations.眼科领域的人工智能:机遇、挑战与伦理考量。
Med Hypothesis Discov Innov Ophthalmol. 2025 May 10;14(1):255-272. doi: 10.51329/mehdiophthal1517. eCollection 2025 Spring.

本文引用的文献

1
Non-adherence to eye care in people with diabetes.糖尿病患者不坚持眼部护理的情况。
BMJ Open Diabetes Res Care. 2017 Jul 31;5(1):e000333. doi: 10.1136/bmjdrc-2016-000333. eCollection 2017.
2
Screening for Diabetic Retinopathy.糖尿病视网膜病变筛查
N Engl J Med. 2017 Apr 20;376(16):1587-1588. doi: 10.1056/NEJMe1701820.
5
Telemedicine screening for eye disease.眼科疾病的远程医疗筛查
JAMA. 2015 Apr 28;313(16):1666-7. doi: 10.1001/jama.2015.107.
9
Automated early detection of diabetic retinopathy.糖尿病性视网膜病变的自动早期检测。
Ophthalmology. 2010 Jun;117(6):1147-54. doi: 10.1016/j.ophtha.2010.03.046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验