Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112.
Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah 84112, and.
J Neurosci. 2019 Mar 13;39(11):2025-2040. doi: 10.1523/JNEUROSCI.1854-18.2018. Epub 2019 Jan 15.
Microglia play important roles in shaping the developing CNS, and at early stages they have been proposed to regulate progenitor proliferation, differentiation, and neuronal survival. However, these studies reveal contradictory outcomes, highlighting the complexity of these cell-cell interactions. Here, we investigate microglia function during embryonic mouse retina development, where only microglia, progenitors, and neurons are present. In both sexes, we determine that microglia primarily interact with retinal neurons and find that depletion of microglia via conditional KO of the receptor results in increased density of retinal ganglion cells (RGCs). Pharmacological inhibition of microglia also results in an increase in RGCs, with no effect on retinal progenitor proliferation, RGC genesis, or apoptosis. We show that microglia in the embryonic retina are enriched for phagocytic markers and observe engulfment of nonapoptotic Brn3-labeled RGCs. We investigate the molecular pathways that can mediate cell engulfment by microglia and find selective downregulation of complement pathway components with microglia inhibition, and further show that C1q protein marks a subset of RGCs in the embryonic retina. KO of complement receptor 3 (), which is only expressed by microglia, results in increased RGC density, similar to what we observed after depletion or inhibition of microglia. Thus, our data suggest that microglia regulate neuron elimination in the embryonic mouse retina by complement-mediated phagocytosis of non-apoptotic newborn RGCs. Microglia are emerging as active and important participants in regulating neuron number in development, during adult neurogenesis, and following stem cell therapies. However, their role in these contexts and the mechanisms involved are not fully defined. Using a well-characterized system, we provide evidence that microglia regulate neuronal elimination by complement-mediated engulfment of nonapoptotic neurons. This work provides a significant advancement of the field by defining molecular mechanisms for microglia-mediated cell elimination. Our data add to a growing body of evidence that microglia are essential for proper nervous system development. In addition, we elucidate microglia function in the developing retina, which may shed light on microglia involvement in the context of retinal injury and disease.
小胶质细胞在塑造中枢神经系统的发育中发挥着重要作用,在早期阶段,它们被提出可以调节祖细胞的增殖、分化和神经元的存活。然而,这些研究揭示了相互矛盾的结果,突出了这些细胞-细胞相互作用的复杂性。在这里,我们研究了小胶质细胞在胚胎期小鼠视网膜发育过程中的功能,此时只有小胶质细胞、祖细胞和神经元存在。在雌雄两性中,我们确定小胶质细胞主要与视网膜神经元相互作用,并发现通过条件性敲除 受体耗竭小胶质细胞会导致视网膜神经节细胞 (RGC) 的密度增加。小胶质细胞的药理学抑制也会导致 RGC 的增加,而对视网膜祖细胞的增殖、RGC 发生或凋亡没有影响。我们表明,胚胎视网膜中的小胶质细胞富含吞噬标记物,并观察到非凋亡 Brn3 标记的 RGC 的吞噬作用。我们研究了可以介导小胶质细胞吞噬作用的分子途径,发现小胶质细胞抑制时补体途径成分的选择性下调,进一步表明 C1q 蛋白标记了胚胎视网膜中 RGC 的一个亚群。仅在小胶质细胞中表达的补体受体 3 () 的 KO 导致 RGC 密度增加,与我们观察到的小胶质细胞耗竭或抑制后相似。因此,我们的数据表明,小胶质细胞通过补体介导的对非凋亡新生 RGC 的吞噬作用来调节胚胎期小鼠视网膜中的神经元消除。小胶质细胞在调节发育过程中的神经元数量、成年神经发生和干细胞治疗后神经元数量方面正成为活跃和重要的参与者。然而,它们在这些情况下的作用和涉及的机制尚未完全确定。使用经过充分表征的 系统,我们提供了证据表明,小胶质细胞通过补体介导的非凋亡神经元吞噬作用来调节神经元消除。这项工作通过定义小胶质细胞介导的细胞消除的 分子机制,为该领域提供了重要的进展。我们的数据增加了越来越多的证据,表明小胶质细胞对正常神经系统的发育至关重要。此外,我们阐明了小胶质细胞在发育中的视网膜中的功能,这可能揭示了小胶质细胞在视网膜损伤和疾病背景下的作用。