Pandey Dinesh, Wang Hua, Yin Xiaoxia, Wang Kate, Zhang Yanchun, Shen Jing
Victoria University, Melbourne, Australia.
Guangzhou University, Guangzhou, China.
Health Inf Sci Syst. 2022 May 20;10(1):9. doi: 10.1007/s13755-022-00176-w. eCollection 2022 Dec.
We offer a framework for automatically and accurately segmenting breast lesions from Dynamic Contrast Enhanced (DCE) MRI in this paper. The framework is built using max flow and min cut problems in the continuous domain over phase preserved denoised images. Three stages are required to complete the proposed approach. First, post-contrast and pre-contrast images are subtracted, followed by image registrations that benefit to enhancing lesion areas. Second, a phase preserved denoising and pixel-wise adaptive Wiener filtering technique is used, followed by max flow and min cut problems in a continuous domain. A denoising mechanism clears the noise in the images by preserving useful and detailed features such as edges. Then, lesion detection is performed using continuous max flow. Finally, a morphological operation is used as a post-processing step to further delineate the obtained results. A series of qualitative and quantitative trials employing nine performance metrics on 21 cases with two different MR image resolutions were used to verify the effectiveness of the proposed method. Performance results demonstrate the quality of segmentation obtained from the proposed method.
在本文中,我们提供了一个用于从动态对比增强(DCE)磁共振成像(MRI)中自动且准确地分割乳腺病变的框架。该框架是基于相位保留去噪图像在连续域中的最大流和最小割问题构建的。完成所提出的方法需要三个阶段。首先,对增强后图像和增强前图像进行相减,随后进行有助于增强病变区域的图像配准。其次,使用相位保留去噪和逐像素自适应维纳滤波技术,接着处理连续域中的最大流和最小割问题。一种去噪机制通过保留诸如边缘等有用且详细的特征来清除图像中的噪声。然后,使用连续最大流进行病变检测。最后,使用形态学操作作为后处理步骤来进一步描绘所获得的结果。我们采用九个性能指标,对21例具有两种不同MR图像分辨率的病例进行了一系列定性和定量试验,以验证所提出方法的有效性。性能结果证明了从所提出方法获得的分割质量。