Suppr超能文献

抗生素耐药时代基于组学的微生物天然产物生物发现方法。

Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era.

作者信息

Chandra Mohana N, Yashavantha Rao H C, Rakshith D, Mithun P R, Nuthan B R, Satish S

机构信息

Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India.

Department of Life Sciences, Christ University, Bengaluru 560029, Karnataka, India.

出版信息

J Genet Eng Biotechnol. 2018 Jun;16(1):1-8. doi: 10.1016/j.jgeb.2018.01.006. Epub 2018 Mar 2.

Abstract

The need for a new antibiotic pipeline to confront threat imposed by resistant pathogens has become a major global concern for human health. To confront the challenge there is a need for discovery and development of new class of antibiotics. Nature which is considered treasure trove, there is re-emerged interest in exploring untapped microbial to yield novel molecules, due to their wide array of negative effects associated with synthetic drugs. Natural product researchers have developed many new techniques over the past few years for developing diverse compounds of biopotential. Taking edge in the advancement of genomics, genetic engineering, drug design, surface modification, scaffolds, pharmacophores and target-based approach is necessary. These techniques have been economically sustainable and also proven efficient in natural product discovery. This review will focus on recent advances in diverse discipline approach from integrated Bioinformatics predictions, genetic engineering and medicinal chemistry for the synthesis of natural products vital for the discovery of novel antibiotics having potential application.

摘要

面对耐药病原体带来的威胁,构建新的抗生素研发渠道已成为全球人类健康的重大关切。为应对这一挑战,需要发现和开发新型抗生素。自然界被视为宝库,由于合成药物存在诸多负面影响,人们重新燃起了探索未开发微生物以获取新分子的兴趣。在过去几年里,天然产物研究人员开发了许多新技术来开发具有生物活性的多样化合物。利用基因组学、基因工程、药物设计、表面修饰、支架、药效团和基于靶点的方法取得进展很有必要。这些技术在经济上具有可持续性,并且在天然产物发现中已被证明是有效的。本综述将聚焦于综合生物信息学预测、基因工程和药物化学等多学科方法的最新进展,这些方法用于合成对发现具有潜在应用价值的新型抗生素至关重要的天然产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d61/6296576/ccd776d26eb9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验