Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
Pain. 2019 May;160(5):1082-1092. doi: 10.1097/j.pain.0000000000001489.
Accumulating evidence has demonstrated that the enhanced synaptic plasticity of nociceptive interneurons in the spinal dorsal horn is the basis of central sensitization in neuropathic pain. Our previous results demonstrated that sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, alleviates neuropathic pain in type 2 diabetes mellitus rats. SIRT1 has also been reported to regulate synaptic plasticity in different brain neurons. However, the role of SIRT1 in synaptic plasticity of spinal dorsal horn neurons remains unknown. In this study, we found that in the spinal dorsal horn of diabetic neuropathic pain (DNP) rats and db/db mice, decreased SIRT1 expression was accompanied by enhanced structural synaptic plasticity. The levels of postsynaptic density protein 95 (PSD-95), growth-associated protein 43 (GAP43), and synaptophysin increased in the spinal dorsal horn of DNP rats and db/db mice and in high glucose-cultured primary spinal neurons. Upregulation of spinal SIRT1 by SIRT1 activator SRT1720 relieved pain behavior, inhibited the enhanced structural synaptic plasticity in rats and db/db mice with DNP, and decreased the levels of synapse-associated proteins in DNP rats, db/db mice, and high glucose-cultured spinal neurons. SIRT1-shRNA induced pain behavior and enhanced structural synaptic plasticity in normal rats and increased synapse-associated proteins levels in normal rats and spinal neurons. Intrathecal injection of AAV-Cre-EGFP into SIRT1 mice also induced pain behavior and enhanced synaptic plasticity of the spinal dorsal horn neurons. These results suggest that SIRT1 plays an important role in the progression of DNP by regulating synaptic plasticity of spinal dorsal horn neurons.
越来越多的证据表明,脊髓背角伤害感受神经元的突触可塑性增强是神经病理性疼痛中枢敏化的基础。我们之前的研究结果表明,烟酰胺腺嘌呤二核苷酸(NAD+)依赖性去乙酰化酶 SIRT1 可减轻 2 型糖尿病大鼠的神经病理性疼痛。已有报道称 SIRT1 还可以调节不同脑神经元的突触可塑性。然而,SIRT1 在脊髓背角神经元突触可塑性中的作用尚不清楚。在本研究中,我们发现糖尿病神经病理性疼痛(DNP)大鼠和 db/db 小鼠的脊髓背角中 SIRT1 表达降低伴随着结构型突触可塑性增强。DNP 大鼠和 db/db 小鼠以及高糖培养的原代脊髓神经元中,突触后密度蛋白 95(PSD-95)、生长相关蛋白 43(GAP43)和突触小体蛋白的水平升高。脊髓 SIRT1 的上调通过 SIRT1 激活剂 SRT1720 缓解疼痛行为,抑制 DNP 大鼠和 db/db 小鼠增强的结构型突触可塑性,并降低 DNP 大鼠、db/db 小鼠和高糖培养的脊髓神经元中突触相关蛋白的水平。正常大鼠中 SIRT1-shRNA 诱导疼痛行为和增强结构型突触可塑性,并增加正常大鼠和脊髓神经元中突触相关蛋白的水平。将 AAV-Cre-EGFP 鞘内注射到 SIRT1 敲除小鼠中也会诱导脊髓背角神经元的疼痛行为和增强突触可塑性。这些结果表明,SIRT1 通过调节脊髓背角神经元的突触可塑性在 DNP 的进展中发挥重要作用。