Çağlayan Çağlar, Terawaki Hiromi, Chen Qiushi, Rai Ashish, Ayer Turgay, Flowers Christopher R
Çağlar Çağlayan and Turgay Ayer, Georgia Institute of Technology; Hiromi Terawaki and Christopher R. Flowers, Emory University; Ashish Rai, American Cancer Society, Atlanta GA; and Qiushi Chen, Massachusetts General Hospital, Boston MA.
JCO Clin Cancer Inform. 2018 Dec;2:1-11. doi: 10.1200/CCI.17.00029.
Microsimulation is a modeling technique that uses a sample size of individual units (microunits), each with a unique set of attributes, and allows for the simulation of downstream events on the basis of predefined states and transition probabilities between those states over time. In this article, we describe the history of the role of microsimulation in medicine and its potential applications in oncology as useful tools for population risk stratification and treatment strategy design for precision medicine.
We conducted a comprehensive and methodical search of the literature using electronic databases-Medline, Embase, and Cochrane-for works published between 1985 and 2016. A medical subject heading search strategy was constructed for Medline searches by using a combination of relevant search terms, such as "microsimulation model medicine," "multistate modeling cancer," and "oncology."
Microsimulation modeling is particularly useful for the study of optimal intervention strategies when randomized control trials may not be feasible, ethical, or practical. Microsimulation models can retain memory of prior behaviors and states. As such, it allows an explicit representation and understanding of how various processes propagate over time and affect the final outcomes for an individual or in a population.
A well-calibrated microsimulation model can be used to predict the outcome of the event of interest for a new individual or subpopulations, assess the effectiveness and cost effectiveness of alternative interventions, and project the future disease burden of oncologic diseases. In the growing field of oncology research, a microsimulation model can serve as a valuable tool among the various facets of methodology available.
微观模拟是一种建模技术,它使用个体单元(微观单元)的样本量,每个单元都有一组独特的属性,并允许根据预定义的状态以及这些状态之间随时间的转换概率来模拟下游事件。在本文中,我们描述了微观模拟在医学中的作用历史及其在肿瘤学中的潜在应用,这些应用作为群体风险分层和精准医学治疗策略设计的有用工具。
我们使用电子数据库——Medline、Embase和Cochrane——对1985年至2016年发表的文献进行了全面且系统的检索。通过使用相关检索词的组合,如“微观模拟模型医学”“多状态建模癌症”和“肿瘤学”,构建了用于Medline检索的医学主题词检索策略。
当随机对照试验不可行、不符合伦理或不实际时,微观模拟建模对于研究最佳干预策略特别有用。微观模拟模型可以保留对先前行为和状态的记忆。因此,它允许明确表示和理解各种过程如何随时间传播并影响个体或群体的最终结果。
一个经过良好校准的微观模拟模型可用于预测新个体或亚群体中感兴趣事件的结果,评估替代干预措施的有效性和成本效益,并预测肿瘤疾病未来的疾病负担。在不断发展的肿瘤学研究领域,微观模拟模型可以作为现有各种方法学中的一种有价值的工具。