Worthington Joachim, Feletto Eleonora, He Emily, Wade Stephen, de Graaff Barbara, Nguyen Anh Le Tuan, George Jacob, Canfell Karen, Caruana Michael
The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia.
Menzies Institute for Medical Research, The University of Tasmania, Hobart, TAS, Australia.
Med Decis Making. 2025 Jul;45(5):569-586. doi: 10.1177/0272989X251333398. Epub 2025 May 8.
IntroductionEpidemiological models benefit from incorporating detailed time-to-event data to understand how disease risk evolves. For example, decompensation risk in liver cirrhosis depends on sojourn time spent with cirrhosis. Semi-Markov and related models capture these details by modeling time-to-event distributions based on published survival data. However, implementations of semi-Markov processes rely on Monte Carlo sampling methods, which increase computational requirements and introduce stochastic variability. Explicitly calculating the evolving transition likelihood can avoid these issues and provide fast, reliable estimates.MethodsWe present the sojourn time density framework for computing semi-Markov and related models by calculating the evolving sojourn time probability density as a system of partial differential equations. The framework is parametrized by commonly used hazard and models the distribution of current disease state and sojourn time. We describe the mathematical background, a numerical method for computation, and an example model of liver disease.ResultsModels developed with the sojourn time density framework can directly incorporate time-to-event data and serial events in a deterministic system. This increases the level of potential model detail over Markov-type models, improves parameter identifiability, and reduces computational burden and stochastic uncertainty compared with Monte Carlo methods. The example model of liver disease was able to accurately reproduce targets without extensive calibration or fitting and required minimal computational burden.ConclusionsExplicitly modeling sojourn time distribution allows us to represent semi-Markov systems using detailed survival data from epidemiological studies without requiring sampling, avoiding the need for calibration, reducing computational time, and allowing for more robust probabilistic sensitivity analyses.HighlightsTime-inhomogeneous semi-Markov models and other time-to-event-based modeling approaches can capture risks that evolve over time spent with a disease.We describe an approach to computing these models that represents them as partial differential equations representing the evolution of the sojourn time probability density.This sojourn time density framework incorporates complex data sources on competing risks and serial events while minimizing computational complexity.
引言
流行病学模型通过纳入详细的事件发生时间数据来了解疾病风险如何演变,从而从中受益。例如,肝硬化的失代偿风险取决于患肝硬化的停留时间。半马尔可夫模型及相关模型通过基于已发表的生存数据对事件发生时间分布进行建模来捕捉这些细节。然而,半马尔可夫过程的实现依赖于蒙特卡罗抽样方法,这增加了计算需求并引入了随机变异性。显式计算不断演变的转移可能性可以避免这些问题,并提供快速、可靠的估计。
方法
我们提出了停留时间密度框架,通过将不断演变的停留时间概率密度计算为一个偏微分方程组来计算半马尔可夫模型及相关模型。该框架由常用的风险函数参数化,并对当前疾病状态和停留时间的分布进行建模。我们描述了其数学背景、一种计算数值方法以及一个肝病示例模型。
结果
使用停留时间密度框架开发的模型可以在确定性系统中直接纳入事件发生时间数据和序列事件。与马尔可夫型模型相比,这增加了潜在模型细节的水平,提高了参数可识别性,并减少了计算负担和随机不确定性。肝病示例模型能够在无需大量校准或拟合的情况下准确重现目标,并且计算负担最小。
结论
显式对停留时间分布进行建模使我们能够使用流行病学研究中的详细生存数据来表示半马尔可夫系统,而无需抽样,无需校准,减少计算时间,并允许进行更稳健的概率敏感性分析。
要点
时间非齐次半马尔可夫模型和其他基于事件发生时间的建模方法可以捕捉随着患病时间而演变的风险。
我们描述了一种计算这些模型的方法,即将它们表示为代表停留时间概率密度演变的偏微分方程。
这个停留时间密度框架纳入了关于竞争风险和序列事件的复杂数据源,同时将计算复杂性降至最低。