Suppr超能文献

应用放射组学预测生殖细胞肿瘤化疗后腹膜后淋巴结肿块的病理情况。

Applying Radiomics to Predict Pathology of Postchemotherapy Retroperitoneal Nodal Masses in Germ Cell Tumors.

作者信息

Lewin Jeremy, Dufort Paul, Halankar Jaydeep, O'Malley Martin, Jewett Michael A S, Hamilton Robert J, Gupta Abha, Lorenzo Armando, Traubici Jeffrey, Nayan Madhur, Leão Ricardo, Warde Padraig, Chung Peter, Anson Cartwright Lynn, Sweet Joan, Hansen Aaron R, Metser Ur, Bedard Philippe L

机构信息

Jeremy Lewin, Padraig Warde, Peter Chung, Lynn Anson Cartwright, Joan Sweet, Aaron R. Hansen, and Philippe L. Bedard, Princess Margaret Cancer Centre; Michael A.S. Jewett, Robert J. Hamilton, Madhur Nayan, Ricardo Leão, Aaron R. Hansen, and Philippe L. Bedard, University of Toronto; Paul Dufort, Jaydeep Halankar, Martin O'Malley, and Ur Metser, University Health Network; and Abha Gupta, Armando Lorenzo, and Jeffrey Traubici, Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

JCO Clin Cancer Inform. 2018 Dec;2:1-12. doi: 10.1200/CCI.18.00004.

Abstract

PURPOSE

After chemotherapy, approximately 50% of patients with metastatic testicular germ cell tumors (GCTs) who undergo retroperitoneal lymph node dissections (RPNLDs) for residual masses have fibrosis. Radiomics uses image processing techniques to extract quantitative textures/features from regions of interest (ROIs) to train a classifier that predicts outcomes. We hypothesized that radiomics would identify patients with a high likelihood of fibrosis who may avoid RPLND.

PATIENTS AND METHODS

Patients with GCT who had an RPLND for nodal masses > 1 cm after first-line platinum chemotherapy were included. Preoperative contrast-enhanced axial computed tomography images of retroperitoneal ROIs were manually contoured. Radiomics features (n = 153) were used to train a radial basis function support vector machine classifier to discriminate between viable GCT/mature teratoma versus fibrosis. A nested 10-fold cross-validation protocol was used to determine classifier accuracy. Clinical variables/restricted size criteria were used to optimize the classifier.

RESULTS

Seventy-seven patients with 102 ROIs were analyzed (GCT, 21; teratoma, 41; fibrosis, 40). The discriminative accuracy of radiomics to identify GCT/teratoma versus fibrosis was 72 ± 2.2% (area under the curve [AUC], 0.74 ± 0.028); sensitivity was 56.2 ± 15.0%, and specificity was 81.9 ± 9.0% ( P = .001). No major predictive differences were identified when data were restricted by varying maximal axial diameters (AUC range, 0.58 ± 0.05 to 0.74 ± 0.03). The prediction algorithm using clinical variables alone identified an AUC of 0.76. When these variables were added to the radiomics signature, the best performing classifier was identified when axial masses were limited to diameter < 2 cm (accuracy, 88.2 ± 4.4; AUC, 0.80 ± 0.05; P = .02).

CONCLUSION

A predictive radiomics algorithm had a discriminative accuracy of 72% that improved to 88% when combined with clinical predictors. Additional independent validation is required to assess whether radiomics allows patients with a high predicted likelihood of fibrosis to avoid RPLND.

摘要

目的

化疗后,约50%接受腹膜后淋巴结清扫术(RPNLD)以处理残留肿块的转移性睾丸生殖细胞肿瘤(GCT)患者会出现纤维化。放射组学利用图像处理技术从感兴趣区域(ROI)提取定量纹理/特征,以训练预测结果的分类器。我们假设放射组学能够识别出纤维化可能性高的患者,这些患者可能无需接受腹膜后淋巴结清扫术(RPLND)。

患者与方法

纳入一线铂类化疗后因淋巴结肿块>1 cm而接受RPLND的GCT患者。对腹膜后ROI的术前增强轴向计算机断层扫描图像进行手动勾勒轮廓。放射组学特征(n = 153)用于训练径向基函数支持向量机分类器,以区分存活的GCT/成熟畸胎瘤与纤维化。采用嵌套10倍交叉验证方案来确定分类器的准确性。使用临床变量/受限大小标准来优化分类器。

结果

分析了77例患者的102个ROI(GCT,21个;畸胎瘤,41个;纤维化,40个)。放射组学识别GCT/畸胎瘤与纤维化的判别准确率为72±2.2%(曲线下面积[AUC],0.74±0.028);敏感性为56.2±15.0%,特异性为81.9±9.0%(P = 0.001)。当数据按不同的最大轴向直径进行限制时,未发现主要预测差异(AUC范围,0.58±0.05至0.74±0.03)。仅使用临床变量的预测算法得出的AUC为0.76。当将这些变量添加到放射组学特征中时,当轴向肿块直径限制在<2 cm时,识别出性能最佳的分类器(准确率,88.2±4.4;AUC,0.80±0.05;P = 0.02)。

结论

一种预测性放射组学算法的判别准确率为72%,与临床预测指标联合使用时提高到88%。需要进行额外的独立验证,以评估放射组学是否能让预测纤维化可能性高的患者避免接受RPLND。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0ed/6874033/5ac38e687c9f/CCI.18.00004f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验