Kalari Krishna R, Sinnwell Jason P, Thompson Kevin J, Tang Xiaojia, Carlson Erin E, Yu Jia, Vedell Peter T, Ingle James N, Weinshilboum Richard M, Boughey Judy C, Wang Liewei, Goetz Matthew P, Suman Vera
All authors: Mayo Clinic, Rochester, MN.
JCO Clin Cancer Inform. 2018 Dec;2:1-11. doi: 10.1200/CCI.18.00012.
The majority of patients with cancer receive treatments that are minimally informed by omics data. We propose a precision medicine computational framework, PANOPLY (Precision Cancer Genomic Report: Single Sample Inventory), to identify and prioritize drug targets and cancer therapy regimens.
The PANOPLY approach integrates clinical data with germline and somatic features obtained from multiomics platforms and applies machine learning and network analysis approaches in the context of the individual patient and matched controls. The PANOPLY workflow uses the following four steps: selection of matched controls to the patient of interest; identification of patient-specific genomic events; identification of suitable drugs using the driver-gene network and random forest analyses; and provision of an integrated multiomics case report of the patient with prioritization of anticancer drugs.
The PANOPLY workflow can be executed on a stand-alone virtual machine and is also available for download as an R package. We applied the method to an institutional breast cancer neoadjuvant chemotherapy study that collected clinical and genomic data as well as patient-derived xenografts to investigate the prioritization offered by PANOPLY. In a chemotherapy-resistant patient-derived xenograft model, we found that that the prioritized drug, olaparib, was more effective than placebo in treating the tumor ( P < .05). We also applied PANOPLY to in-house and publicly accessible multiomics tumor data sets with therapeutic response or survival data available.
PANOPLY shows promise as a means to prioritize drugs on the basis of clinical and multiomics data for an individual patient with cancer. Additional studies are needed to confirm this approach.
大多数癌症患者接受的治疗在很大程度上未依据组学数据。我们提出了一种精准医学计算框架PANOPLY(精准癌症基因组报告:单样本清单),以识别药物靶点并对癌症治疗方案进行优先级排序。
PANOPLY方法将临床数据与从多组学平台获得的种系和体细胞特征相结合,并在个体患者及匹配对照的背景下应用机器学习和网络分析方法。PANOPLY工作流程包括以下四个步骤:选择与感兴趣患者匹配的对照;识别患者特异性基因组事件;使用驱动基因网络和随机森林分析识别合适的药物;提供患者的综合多组学病例报告并对抗癌药物进行优先级排序。
PANOPLY工作流程可在独立虚拟机上执行,也可作为R包下载。我们将该方法应用于一项机构性乳腺癌新辅助化疗研究,该研究收集了临床和基因组数据以及患者来源的异种移植瘤,以研究PANOPLY提供的优先级排序。在一个化疗耐药的患者来源的异种移植瘤模型中,我们发现优先级排序的药物奥拉帕利在治疗肿瘤方面比安慰剂更有效(P <.05)。我们还将PANOPLY应用于内部和公开可用的具有治疗反应或生存数据的多组学肿瘤数据集。
PANOPLY有望作为一种基于临床和多组学数据为个体癌症患者对药物进行优先级排序的方法。需要更多研究来证实这种方法。