Suppr超能文献

全景分析:针对个体患者量身定制的组学引导药物优先排序方法。

PANOPLY: Omics-Guided Drug Prioritization Method Tailored to an Individual Patient.

作者信息

Kalari Krishna R, Sinnwell Jason P, Thompson Kevin J, Tang Xiaojia, Carlson Erin E, Yu Jia, Vedell Peter T, Ingle James N, Weinshilboum Richard M, Boughey Judy C, Wang Liewei, Goetz Matthew P, Suman Vera

机构信息

All authors: Mayo Clinic, Rochester, MN.

出版信息

JCO Clin Cancer Inform. 2018 Dec;2:1-11. doi: 10.1200/CCI.18.00012.

Abstract

PURPOSE

The majority of patients with cancer receive treatments that are minimally informed by omics data. We propose a precision medicine computational framework, PANOPLY (Precision Cancer Genomic Report: Single Sample Inventory), to identify and prioritize drug targets and cancer therapy regimens.

MATERIALS AND METHODS

The PANOPLY approach integrates clinical data with germline and somatic features obtained from multiomics platforms and applies machine learning and network analysis approaches in the context of the individual patient and matched controls. The PANOPLY workflow uses the following four steps: selection of matched controls to the patient of interest; identification of patient-specific genomic events; identification of suitable drugs using the driver-gene network and random forest analyses; and provision of an integrated multiomics case report of the patient with prioritization of anticancer drugs.

RESULTS

The PANOPLY workflow can be executed on a stand-alone virtual machine and is also available for download as an R package. We applied the method to an institutional breast cancer neoadjuvant chemotherapy study that collected clinical and genomic data as well as patient-derived xenografts to investigate the prioritization offered by PANOPLY. In a chemotherapy-resistant patient-derived xenograft model, we found that that the prioritized drug, olaparib, was more effective than placebo in treating the tumor ( P < .05). We also applied PANOPLY to in-house and publicly accessible multiomics tumor data sets with therapeutic response or survival data available.

CONCLUSION

PANOPLY shows promise as a means to prioritize drugs on the basis of clinical and multiomics data for an individual patient with cancer. Additional studies are needed to confirm this approach.

摘要

目的

大多数癌症患者接受的治疗在很大程度上未依据组学数据。我们提出了一种精准医学计算框架PANOPLY(精准癌症基因组报告:单样本清单),以识别药物靶点并对癌症治疗方案进行优先级排序。

材料与方法

PANOPLY方法将临床数据与从多组学平台获得的种系和体细胞特征相结合,并在个体患者及匹配对照的背景下应用机器学习和网络分析方法。PANOPLY工作流程包括以下四个步骤:选择与感兴趣患者匹配的对照;识别患者特异性基因组事件;使用驱动基因网络和随机森林分析识别合适的药物;提供患者的综合多组学病例报告并对抗癌药物进行优先级排序。

结果

PANOPLY工作流程可在独立虚拟机上执行,也可作为R包下载。我们将该方法应用于一项机构性乳腺癌新辅助化疗研究,该研究收集了临床和基因组数据以及患者来源的异种移植瘤,以研究PANOPLY提供的优先级排序。在一个化疗耐药的患者来源的异种移植瘤模型中,我们发现优先级排序的药物奥拉帕利在治疗肿瘤方面比安慰剂更有效(P <.05)。我们还将PANOPLY应用于内部和公开可用的具有治疗反应或生存数据的多组学肿瘤数据集。

结论

PANOPLY有望作为一种基于临床和多组学数据为个体癌症患者对药物进行优先级排序的方法。需要更多研究来证实这种方法。

相似文献

1
PANOPLY: Omics-Guided Drug Prioritization Method Tailored to an Individual Patient.
JCO Clin Cancer Inform. 2018 Dec;2:1-11. doi: 10.1200/CCI.18.00012.
2
Establishment of chemosensitivity tests in triple-negative and BRCA-mutated breast cancer patient-derived xenograft models.
PLoS One. 2019 Dec 10;14(12):e0225082. doi: 10.1371/journal.pone.0225082. eCollection 2019.
3
A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients.
J Am Med Inform Assoc. 2016 Jul;23(4):741-9. doi: 10.1093/jamia/ocw004. Epub 2016 Apr 23.
4
A Phase II study of olaparib in breast cancer patients: biological evaluation from a 'window of opportunity' trial.
Future Oncol. 2016 Oct;12(19):2189-93. doi: 10.2217/fon-2016-0116. Epub 2016 Jun 21.
5
Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts.
Clin Cancer Res. 2011 Feb 15;17(4):783-91. doi: 10.1158/1078-0432.CCR-10-1382. Epub 2010 Nov 19.
6
Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein.
World J Gastroenterol. 2016 Dec 28;22(48):10680-10686. doi: 10.3748/wjg.v22.i48.10680.
7
The expression of APE1 in triple-negative breast cancer and its effect on drug sensitivity of olaparib.
Tumour Biol. 2017 Oct;39(10):1010428317713390. doi: 10.1177/1010428317713390.
9
Olaparib Targets Some Advanced Prostate Cancers.
Cancer Discov. 2016 Jan;6(1):OF1. doi: 10.1158/2159-8290.CD-NB2015-161. Epub 2015 Dec 11.
10
Olaparib for the treatment of breast cancer.
Expert Rev Anticancer Ther. 2018 Jun;18(6):519-530. doi: 10.1080/14737140.2018.1458613. Epub 2018 Mar 30.

引用本文的文献

1
Advancing precision oncology with AI-powered genomic analysis.
Front Pharmacol. 2025 Apr 30;16:1591696. doi: 10.3389/fphar.2025.1591696. eCollection 2025.
2
Bioinformatics roadmap for therapy selection in cancer genomics.
Mol Oncol. 2022 Nov;16(21):3881-3908. doi: 10.1002/1878-0261.13286. Epub 2022 Aug 20.
3
Effectiveness of Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review.
Biomed Res Int. 2022 Apr 7;2022:7842566. doi: 10.1155/2022/7842566. eCollection 2022.
4
Molecular-based precision oncology clinical decision making augmented by artificial intelligence.
Emerg Top Life Sci. 2021 Dec 21;5(6):757-764. doi: 10.1042/ETLS20210220.
5
Untangling a complex web: Computational analyses of tumor molecular profiles to decode driver mechanisms.
J Genet Genomics. 2020 Oct 20;47(10):595-609. doi: 10.1016/j.jgg.2020.11.001. Epub 2020 Nov 28.
6
Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns.
Genome Med. 2020 Sep 9;12(1):78. doi: 10.1186/s13073-020-00774-x.

本文引用的文献

1
The hundred-dollar genome: a health care cart before the genomic horse.
CMAJ. 2018 Apr 23;190(16):E514. doi: 10.1503/cmaj.69259.
3
A tool for discovering drug sensitivity and gene expression associations in cancer cells.
PLoS One. 2017 Apr 28;12(4):e0176763. doi: 10.1371/journal.pone.0176763. eCollection 2017.
4
Tumor Sequencing and Patient-Derived Xenografts in the Neoadjuvant Treatment of Breast Cancer.
J Natl Cancer Inst. 2017 Jul 1;109(7). doi: 10.1093/jnci/djw306.
6
Identification of gene-drug interactions that impact patient survival in TCGA.
BMC Bioinformatics. 2016 Oct 6;17(1):409. doi: 10.1186/s12859-016-1255-7.
8
Expression Profiles of Endometrial Carcinoma by Integrative Analysis of TCGA Data.
Gynecol Obstet Invest. 2017;82(1):30-38. doi: 10.1159/000445073. Epub 2016 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验