Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A.
Emerg Top Life Sci. 2021 Dec 21;5(6):757-764. doi: 10.1042/ETLS20210220.
The rapid growth and decreasing cost of Next-generation sequencing (NGS) technologies have made it possible to conduct routine large panel genomic sequencing in many disease settings, especially in the oncology domain. Furthermore, it is now known that optimal disease management of patients depends on individualized cancer treatment guided by comprehensive molecular testing. However, translating results from molecular sequencing reports into actionable clinical insights remains a challenge to most clinicians. In this review, we discuss about some representative systems that leverage artificial intelligence (AI) to facilitate some processes of clinicians' decision making based upon molecular data, focusing on their application in precision oncology. Some limitations and pitfalls of the current application of AI in clinical decision making are also discussed.
下一代测序(NGS)技术的快速发展和成本降低,使得在许多疾病环境中进行常规大型基因组面板测序成为可能,尤其是在肿瘤学领域。此外,现在人们已经认识到,患者的最佳疾病管理取决于通过全面分子检测指导的个体化癌症治疗。然而,将分子测序报告的结果转化为临床医生可操作的临床见解,对大多数临床医生来说仍然是一个挑战。在这篇综述中,我们讨论了一些利用人工智能(AI)来促进临床医生基于分子数据进行决策的代表性系统,重点介绍它们在精准肿瘤学中的应用。我们还讨论了当前人工智能在临床决策中的应用的一些局限性和缺陷。
Emerg Top Life Sci. 2021-12-21
Cancer Cell. 2021-7-12
Adv Exp Med Biol. 2022
Oncologist. 2018-11-16
J Hematol Oncol. 2023-11-27
Rinsho Ketsueki. 2020
Cancer Sci. 2020-3-21
Nat Rev Clin Oncol. 2023-12
Med. 2021-6-11
Genome Med. 2021-2-1
Sci Data. 2020-12-18
Nat Rev Cancer. 2020-8-10
Transl Vis Sci Technol. 2020-2-12