From the Royal Adelaide Hospital, Adelaide, Australia (S.B., L.O.-R., T.K., S.P., J.J.).
Australian Institute for Machine Learning, University of Adelaide, Australia (L.O.-R.).
Stroke. 2019 Mar;50(3):758-760. doi: 10.1161/STROKEAHA.118.024124.
Background and Purpose- Triaging of referrals to transient ischemic attack (TIA) clinics is aided by risk stratification. Deep learning-based natural language processing, a type of machine learning, may be able to assist with the prediction of cerebrovascular cause of TIA-like presentations from free-text information. Methods- Consecutive TIA clinic notes were retrieved from existing databases. Texts associated with cerebrovascular and noncerebrovascular diagnoses were preprocessed before classification experiments, using a variety of classifier models, based on only the free-text description of the history of presenting complaint. The primary outcome was area under the curve (AUC) of the receiver operator curve. The model with the greatest AUC was then used in classification experiments in which it was provided with additional clinical information. Results- Of the classifier models trialed on the history of presenting complaint, the convolutional neural network achieved the greatest predictive capability (AUC±SD; 81.9±2.0). The effects of additional clinical information on AUC were variable. The greatest AUC was achieved when the convolutional neural network was provided with the history of presenting complaint and magnetic resonance imaging report (88.3±3.6). Conclusions- Deep learning-based natural language processing, in particular convolutional neural networks, based on medical free-text, may prove effective in prediction of the cause of TIA-like presentations. Future research investigating the role of the application of deep learning-based natural language processing to the automated triaging of clinic referrals in TIA, and potentially other specialty areas, is indicated.
背景与目的-通过风险分层,可以辅助对短暂性脑缺血发作(TIA)诊所转介的分诊。基于深度学习的自然语言处理是一种机器学习,可以帮助从自由文本信息中预测 TIA 样表现的脑血管原因。
方法-从现有数据库中检索连续的 TIA 诊所记录。在分类实验之前,使用各种分类器模型对与脑血管和非脑血管诊断相关的文本进行预处理,仅基于就诊主诉的自由文本描述。主要结果是接受者操作特征曲线的曲线下面积(AUC)。然后,使用具有最大 AUC 的模型在分类实验中提供其他临床信息。
结果-在针对就诊主诉历史的分类器模型中,卷积神经网络具有最大的预测能力(AUC±SD;81.9±2.0)。额外临床信息对 AUC 的影响是可变的。当卷积神经网络提供就诊主诉和磁共振成像报告时,AUC 达到最大值(88.3±3.6)。
结论-基于医学自由文本的基于深度学习的自然语言处理,特别是卷积神经网络,可能在预测 TIA 样表现的原因方面非常有效。未来的研究需要调查基于深度学习的自然语言处理在 TIA 诊所转介的自动分诊中的应用,以及在其他专业领域的应用。