Suppr超能文献

基于临床优先级标准的医疗转介分诊:使用机器学习技术。

Triaging Medical Referrals Based on Clinical Prioritisation Criteria Using Machine Learning Techniques.

机构信息

School of Business, University of Southern Queensland, Toowoomba, QLD 4350, Australia.

Digital Application Services, eHealth, Brisbane, QLD 4000, Australia.

出版信息

Int J Environ Res Public Health. 2022 Jun 16;19(12):7384. doi: 10.3390/ijerph19127384.

Abstract

Triaging of medical referrals can be completed using various machine learning techniques, but trained models with historical datasets may not be relevant as the clinical criteria for triaging are regularly updated and changed. This paper proposes the use of machine learning techniques coupled with the clinical prioritisation criteria (CPC) of Queensland (QLD), Australia, to deliver better triaging for referrals in accordance with the CPC's updates. The unique feature of the proposed model is its non-reliance on the past datasets for model training. Medical Natural Language Processing (NLP) was applied in the proposed approach to process the medical referrals, which are unstructured free text. The proposed multiclass classification approach achieved a Micro 1 score = 0.98. The proposed approach can help in the processing of two million referrals that the QLD health service receives annually; therefore, they can deliver better and more efficient health services.

摘要

分诊可以使用各种机器学习技术来完成,但是使用历史数据集训练的模型可能并不相关,因为分诊的临床标准经常更新和改变。本文提出了使用机器学习技术结合澳大利亚昆士兰州(QLD)的临床优先排序标准(CPC),根据 CPC 的更新,提供更好的分诊服务。所提出模型的独特之处在于它不依赖过去的数据进行模型训练。本研究方法中应用了医学自然语言处理(NLP)来处理非结构化的自由文本医疗转介。所提出的多类分类方法的微观 1 得分为 0.98。该方法有助于处理 QLD 卫生服务部门每年收到的 200 万份转介,从而提供更好、更高效的医疗服务。

相似文献

10
Behind the scenes: A medical natural language processing project.幕后:一个医学自然语言处理项目。
Int J Med Inform. 2018 Apr;112:68-73. doi: 10.1016/j.ijmedinf.2017.12.003. Epub 2017 Dec 9.

引用本文的文献

4
Human-artificial intelligence interaction in gastrointestinal endoscopy.胃肠内镜检查中的人机交互
World J Gastrointest Endosc. 2024 Mar 16;16(3):126-135. doi: 10.4253/wjge.v16.i3.126.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验