From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901.
the Department of Chemistry, State University of New York at Buffalo and Northeast Structural Genomics Consortium, Buffalo, New York 14260, and.
J Biol Chem. 2019 Mar 15;294(11):4027-4044. doi: 10.1074/jbc.RA118.004723. Epub 2019 Jan 17.
As complications associated with antibiotic resistance have intensified, copper (Cu) is attracting attention as an antimicrobial agent. Recent studies have shown that copper surfaces decrease microbial burden, and host macrophages use Cu to increase bacterial killing. Not surprisingly, microbes have evolved mechanisms to tightly control intracellular Cu pools and protect against Cu toxicity. Here, we identified two genes ( and ) encoded within the arginine-catabolic mobile element (ACME) that we hypothesized function in Cu homeostasis. Supporting this hypothesis, mutational inactivation of or increased copper sensitivity. We found that are co-transcribed and that their transcription is increased during copper stress and in a strain in which , encoding a Cu-responsive transcriptional repressor, was mutated. Moreover, displayed genetic synergy with suggesting that CopB functions in Cu export. We further observed that CopL functions independently of CopB or CopA in Cu toxicity protection and that CopL from the clone USA300 is a membrane-bound and surface-exposed lipoprotein that binds up to four Cu ions. Solution NMR structures of the homologous CopL, together with phylogenetic analysis and chemical-shift perturbation experiments, identified conserved residues potentially involved in Cu coordination. The solution NMR structure also revealed a novel Cu-binding architecture. Of note, a CopL variant with defective Cu binding did not protect against Cu toxicity Taken together, these findings indicate that the ACME-encoded CopB and CopL proteins are additional factors utilized by the highly successful USA300 clone to suppress copper toxicity.
随着抗生素耐药性相关并发症的加剧,铜 (Cu) 作为一种抗菌剂引起了人们的关注。最近的研究表明,铜表面可以减少微生物负担,而宿主巨噬细胞则利用 Cu 来增强细菌的杀伤能力。毫不奇怪,微生物已经进化出了严格控制细胞内 Cu 池并防止 Cu 毒性的机制。在这里,我们鉴定了两个编码于精氨酸代谢可移动元件 (ACME) 内的基因 ( 和 ),我们假设它们在 Cu 稳态中发挥作用。支持这一假设, 或 的突变失活增加了铜敏感性。我们发现 是共转录的,并且它们的转录在铜应激时和在编码 Cu 响应转录抑制剂的 突变的菌株中增加。此外, 与 表现出遗传协同作用,表明 CopB 参与 Cu 输出。我们还观察到 CopL 在 Cu 毒性保护中独立于 CopB 或 CopA 发挥作用,并且来自 克隆 USA300 的 CopL 是一种膜结合和表面暴露的脂蛋白,可结合多达四个 Cu 离子。同源 CopL 的溶液 NMR 结构,以及系统发育分析和化学位移扰动实验,鉴定了可能参与 Cu 配位的保守残基。溶液 NMR 结构还揭示了一种新的 Cu 结合架构。值得注意的是,一种具有缺陷 Cu 结合能力的 CopL 变体不能防止 Cu 毒性。综上所述,这些发现表明,ACME 编码的 CopB 和 CopL 蛋白是高度成功的 USA300 克隆用来抑制铜毒性的另一个因素。