Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
J Neurosci. 2019 Mar 20;39(12):2313-2325. doi: 10.1523/JNEUROSCI.0872-18.2018. Epub 2019 Jan 17.
Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs) in the eye, which ultimately results in visual impairment or even blindness. Because current therapies often fail to halt disease progression, there is an unmet need for novel neuroprotective therapies to support RGC survival. Various research lines suggest that visual target centers in the brain support RGC functioning and survival. Here, we explored whether increasing neuronal activity in one of these projection areas could improve survival of RGCs in a mouse glaucoma model. Prolonged activation of an important murine RGC target area, the superior colliculus (SC), was established via a novel optogenetic stimulation paradigm. By leveraging the unique channel kinetics of the stabilized step function opsin (SSFO), protracted stimulation of the SC was achieved with only a brief light pulse. SSFO-mediated collicular stimulation was confirmed by immunohistochemistry for the immediate-early gene c-Fos and behavioral tracking, which both demonstrated consistent neuronal activity upon repeated stimulation. Finally, the neuroprotective potential of optogenetic collicular stimulation was investigated in mice of either sex subjected to a glaucoma model and a 63% reduction in RGC loss was found. This work describes a new paradigm for optogenetic collicular stimulation and a first demonstration that increasing target neuron activity can increase survival of the projecting neurons. Despite glaucoma being a leading cause of blindness and visual impairment worldwide, no curative therapies exist. This study describes a novel paradigm to reduce retinal ganglion cell (RGC) degeneration underlying glaucoma. Building on previous observations that RGC survival is supported by the target neurons to which they project and using an innovative optogenetic approach, we increased neuronal activity in the mouse superior colliculus, a main projection target of rodent RGCs. This proved to be efficient in reducing RGC loss in a glaucoma model. Our findings establish a new optogenetic paradigm for target stimulation and encourage further exploration of the molecular signaling pathways mediating retrograde neuroprotective communication.
青光眼的特征是眼睛中的视网膜神经节细胞 (RGC) 进行性丧失,最终导致视力损害甚至失明。由于目前的治疗方法往往无法阻止疾病的进展,因此需要新的神经保护疗法来支持 RGC 的存活。各种研究表明,大脑中的视觉目标中心支持 RGC 的功能和存活。在这里,我们探讨了在小鼠青光眼模型中增加这些投射区域之一的神经元活性是否可以改善 RGC 的存活。通过一种新的光遗传学刺激范式,长时间激活一个重要的小鼠 RGC 靶区 - 上丘 (SC)。通过利用稳定阶跃功能视蛋白 (SSFO) 的独特通道动力学,可以仅用短暂的光脉冲实现 SC 的长时间刺激。通过对即时早期基因 c-Fos 的免疫组织化学和行为跟踪来证实 SSFO 介导的上丘刺激,两者都证明了在重复刺激时存在一致的神经元活性。最后,在经历青光眼模型的雌雄小鼠中研究了光遗传学上丘刺激的神经保护潜力,发现 RGC 损失减少了 63%。这项工作描述了一种新的光遗传学上丘刺激范式,首次证明增加靶神经元活性可以增加投射神经元的存活。尽管青光眼是全球失明和视力损害的主要原因,但目前还没有治愈方法。本研究描述了一种减少青光眼相关视网膜神经节细胞 (RGC) 变性的新范式。基于之前的观察结果,即 RGC 的存活得到它们投射的靶神经元的支持,并且使用创新的光遗传学方法,我们增加了小鼠上丘的神经元活性,上丘是啮齿动物 RGC 的主要投射靶标。这在青光眼模型中证明可以有效地减少 RGC 损失。我们的研究结果建立了一种新的靶刺激光遗传学范式,并鼓励进一步探索介导逆行神经保护通讯的分子信号通路。