German Center for Neurodegenerative Diseases, 10117 Berlin, Germany.
Charité-Universitätsmedizin Berlin, Institute of Neurophysiology, 10117 Berlin, Germany, and.
J Neurosci. 2019 Mar 20;39(12):2163-2183. doi: 10.1523/JNEUROSCI.1317-18.2019. Epub 2019 Jan 17.
The regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin-dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated, and whether SVs are cleared en masse together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real-time to support synaptic health. To address these questions, we have developed an imaging-based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light-activated ROS generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy-mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons of either sex, presynaptic autophagy can be induced in as little as 5-10 min and eliminates primarily the damaged protein rather than the SV en masse. Importantly, we also find that autophagy is essential for synaptic function, as light-activated damage to, for example, Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function. The real-time surveillance and clearance of synaptic proteins are thought to be vital to the health, functionality, and integrity of vertebrate synapses and are compromised in neurodegenerative disorders, yet the fundamental mechanisms regulating these systems remain enigmatic. Our analysis reveals that presynaptic autophagy is a critical part of a real-time clearance system at synapses capable of responding to local damage of synaptic vesicle proteins within minutes and to be critical for the ongoing functionality of these synapses. These data indicate that synapse autophagy is not only locally regulated but also crucial for the health and functionality of vertebrate presynaptic boutons.
突触囊泡(SV)蛋白的调控性周转被认为涉及通过内体溶酶体和自噬途径的泛素依赖性标记和降解。然而,目前尚不清楚使用哪种途径,何时激活这些途径,以及 SV 是否与 SV 蛋白一起被大规模清除,或者两者是否被选择性降解。同样令人困惑的是,这些系统能够多快被激活,以及它们是否实时运作以支持突触健康。为了解决这些问题,我们开发了一种基于成像的系统,该系统可以在标记突触前蛋白的同时监测自噬。此外,通过用光激活的 ROS 发生器 Supernova 标记 SV 蛋白,有可能暂时控制对特定 SV 蛋白的损伤,并评估其对自噬介导的清除机制和突触功能的影响。我们的结果表明,在雄性和雌性小鼠海马神经元中,突触前自噬可以在短短 5-10 分钟内被诱导,并且主要消除受损的蛋白质而不是 SV 蛋白的大规模清除。重要的是,我们还发现自噬对于突触功能是必不可少的,例如,只有当同时阻断自噬时,用光激活对 Synaptophysin 的损伤才会损害突触功能。这些数据支持这样的概念,即突触前末梢具有强大的高度调控的清除系统,不仅可以维持突触的完整性,还可以维持突触的功能。据认为,突触蛋白的实时监测和清除对于脊椎动物突触的健康、功能和完整性至关重要,并且在神经退行性疾病中受到损害,但调节这些系统的基本机制仍然是个谜。我们的分析表明,突触前自噬是突触中实时清除系统的重要组成部分,该系统能够在几分钟内对突触囊泡蛋白的局部损伤做出反应,并对这些突触的持续功能至关重要。这些数据表明,突触自噬不仅是局部调节的,而且对于脊椎动物突触前末梢的健康和功能也是至关重要的。