Suppr超能文献

LFMM 2:全基因组研究中基因-环境关联的快速准确推断。

LFMM 2: Fast and Accurate Inference of Gene-Environment Associations in Genome-Wide Studies.

机构信息

Université Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble INP, TIMC-IMAG CNRS UMR 5525, Grenoble 38000, France.

Université Grenoble-Alpes, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institute for Advanced Biosciences, INSERM U 1209 - CNRS UMR 5309, Grenoble 38000, France.

出版信息

Mol Biol Evol. 2019 Apr 1;36(4):852-860. doi: 10.1093/molbev/msz008.

Abstract

Gene-environment association (GEA) studies are essential to understand the past and ongoing adaptations of organisms to their environment, but those studies are complicated by confounding due to unobserved demographic factors. Although the confounding problem has recently received considerable attention, the proposed approaches do not scale with the high-dimensionality of genomic data. Here, we present a new estimation method for latent factor mixed models (LFMMs) implemented in an upgraded version of the corresponding computer program. We developed a least-squares estimation approach for confounder estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several order faster than existing GEA approaches and then our previous version of the LFMM program. In addition, the new method outperforms other fast approaches based on principal component or surrogate variable analysis. We illustrate the program use with analyses of the 1000 Genomes Project data set, leading to new findings on adaptation of humans to their environment, and with analyses of DNA methylation profiles providing insights on how tobacco consumption could affect DNA methylation in patients with rheumatoid arthritis. Software availability: Software is available in the R package lfmm at https://bcm-uga.github.io/lfmm/.

摘要

基因-环境关联(GEA)研究对于理解生物对环境的过去和正在进行的适应至关重要,但由于未观察到的人口因素,这些研究受到了混杂因素的困扰。尽管最近对混杂问题给予了相当多的关注,但所提出的方法并不能与基因组数据的高维性相匹配。在这里,我们提出了一种新的用于潜在因子混合模型(LFMM)的估计方法,该方法在相应计算机程序的升级版本中实现。我们开发了一种用于混杂因素估计的最小二乘估计方法,为几类基因组数据提供了一个独特的框架,而不仅仅局限于基因型。新算法的速度比现有的 GEA 方法和我们之前的 LFMM 程序快几个数量级。此外,新方法优于基于主成分或替代变量分析的其他快速方法。我们使用 1000 基因组计划数据集的分析来说明程序的使用,从而得出人类对环境适应的新发现,并使用 DNA 甲基化谱的分析来探讨吸烟如何影响类风湿关节炎患者的 DNA 甲基化。软件可用性:软件可在 R 包 lfmm 中获得,网址为 https://bcm-uga.github.io/lfmm/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ca/6659841/07755f27a851/msz008f2.jpg

相似文献

1
LFMM 2: Fast and Accurate Inference of Gene-Environment Associations in Genome-Wide Studies.
Mol Biol Evol. 2019 Apr 1;36(4):852-860. doi: 10.1093/molbev/msz008.
2
LEA 3: Factor models in population genetics and ecological genomics with R.
Mol Ecol Resour. 2021 Nov;21(8):2738-2748. doi: 10.1111/1755-0998.13366. Epub 2021 Mar 29.
3
Testing for associations between loci and environmental gradients using latent factor mixed models.
Mol Biol Evol. 2013 Jul;30(7):1687-99. doi: 10.1093/molbev/mst063. Epub 2013 Mar 29.
4
Expanded utility of the R package, qgg, with applications within genomic medicine.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad656.
5
Comparison of different cell type correction methods for genome-scale epigenetics studies.
BMC Bioinformatics. 2017 Apr 14;18(1):216. doi: 10.1186/s12859-017-1611-2.
6
A comprehensive analysis comparing linear and generalized linear models in detecting adaptive SNPs.
Mol Ecol Resour. 2021 Apr;21(3):733-744. doi: 10.1111/1755-0998.13298. Epub 2021 Feb 9.
7
Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.
Bioinformatics. 2018 Aug 15;34(16):2781-2787. doi: 10.1093/bioinformatics/bty185.
8
Sparse latent factor regression models for genome-wide and epigenome-wide association studies.
Stat Appl Genet Mol Biol. 2022 Mar 7;21(1):sagmb-2021-0035. doi: 10.1515/sagmb-2021-0035.
9
High performance computation of landscape genomic models including local indicators of spatial association.
Mol Ecol Resour. 2017 Sep;17(5):1072-1089. doi: 10.1111/1755-0998.12629. Epub 2016 Nov 28.
10
NOJAH: NOt Just Another Heatmap for genome-wide cluster analysis.
PLoS One. 2019 Mar 28;14(3):e0204542. doi: 10.1371/journal.pone.0204542. eCollection 2019.

引用本文的文献

1
Immediate and durable effects of maternal tobacco consumption on placental DNA methylation: a replication and discovery study.
Environ Epigenet. 2025 May 28;11(1):dvaf016. doi: 10.1093/eep/dvaf016. eCollection 2025.
3
Local Adaptation Drives Leaf Thermoregulation in Tropical Rainforest Trees.
Glob Chang Biol. 2025 Sep;31(9):e70461. doi: 10.1111/gcb.70461.
4
Local Climate Adaptation in Chinese Indigenous Pig Genomes.
Animals (Basel). 2025 Aug 18;15(16):2412. doi: 10.3390/ani15162412.
5
Global coral genomic vulnerability explains recent reef losses.
bioRxiv. 2025 Aug 11:2024.03.25.586253. doi: 10.1101/2024.03.25.586253.
8
Urban Life Shapes Genetic Diversity in the Green Anole, Anolis carolinensis.
Mol Ecol. 2025 Sep;34(18):e70057. doi: 10.1111/mec.70057. Epub 2025 Jul 29.
9
Climate Adaptation and Genetic Differentiation in the Mosquito Species Culex tarsalis.
Genome Biol Evol. 2025 Jul 30;17(8). doi: 10.1093/gbe/evaf143.

本文引用的文献

1
CONFOUNDER ADJUSTMENT IN MULTIPLE HYPOTHESIS TESTING.
Ann Stat. 2017 Oct;45(5):1863-1894. doi: 10.1214/16-AOS1511. Epub 2017 Oct 31.
2
A network pharmacology approach to determine the synergetic mechanisms of herb couple for treating rheumatic arthritis.
Drug Des Devel Ther. 2018 Apr 24;12:967-979. doi: 10.2147/DDDT.S161904. eCollection 2018.
3
Statistical and integrative system-level analysis of DNA methylation data.
Nat Rev Genet. 2018 Mar;19(3):129-147. doi: 10.1038/nrg.2017.86. Epub 2017 Nov 13.
4
Abnormal DNA methylation may contribute to the progression of osteosarcoma.
Mol Med Rep. 2018 Jan;17(1):193-199. doi: 10.3892/mmr.2017.7869. Epub 2017 Oct 25.
5
Aberrant methylation patterns affect the molecular pathogenesis of rheumatoid arthritis.
Int Immunopharmacol. 2017 May;46:141-145. doi: 10.1016/j.intimp.2017.02.008. Epub 2017 Mar 7.
7
Going global by adapting local: A review of recent human adaptation.
Science. 2016 Oct 7;354(6308):54-59. doi: 10.1126/science.aaf5098.
8
The Ensembl Variant Effect Predictor.
Genome Biol. 2016 Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4.
9
Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.
Genetics. 2015 Dec;201(4):1555-79. doi: 10.1534/genetics.115.181453. Epub 2015 Oct 19.
10
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验