Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
J Mol Biol. 2019 Mar 1;431(5):970-980. doi: 10.1016/j.jmb.2019.01.013. Epub 2019 Jan 15.
The human gut microbiota encodes β-glucuronidases (GUSs) that play key roles in health and disease via the metabolism of glucuronate-containing carbohydrates and drugs. Hundreds of putative bacterial GUS enzymes have been identified by metagenomic analysis of the human gut microbiome, but less than 10% have characterized structures and functions. Here we describe a set of unique gut microbial GUS enzymes that bind flavin mononucleotide (FMN). First, we show using mass spectrometry, isothermal titration calorimetry, and x-ray crystallography that a purified GUS from the gut commensal microbe Faecalibacterium prausnitzii binds to FMN on a surface groove located 30 Å away from the active site. Second, utilizing structural and functional data from this FMN-binding GUS, we analyzed the 279 unique GUS sequences from the Human Microbiome Project database and identified 14 putative FMN-binding GUSs. We characterized four of these hits and solved the structure of two, the GUSs from Ruminococcus gnavus and Roseburia hominis, which confirmed that these are FMN binders. Third, binding and kinetic analysis of the FMN-binding site mutants of these five GUSs show that they utilize a conserved site to bind FMN that is not essential for GUS activity, but can affect K. Lastly, a comprehensive structural review of the PDB reveals that the FMN-binding site employed by these enzymes is unlike any structurally characterized FMN binders to date. These findings reveal the first instance of an FMN-binding glycoside hydrolase and suggest a potential link between FMN and carbohydrate metabolism in the human gut microbiota.
人类肠道微生物群编码β-葡萄糖醛酸酶(GUS),通过代谢含有葡萄糖醛酸的碳水化合物和药物,在健康和疾病中发挥关键作用。通过对人类肠道微生物组的宏基因组分析,已经鉴定了数百种推定的细菌 GUS 酶,但只有不到 10%的酶具有结构和功能特征。在这里,我们描述了一组独特的肠道微生物 GUS 酶,它们能结合黄素单核苷酸(FMN)。首先,我们通过质谱、等温滴定量热法和 X 射线晶体学表明,从肠道共生微生物 Faecalibacterium prausnitzii 中纯化的 GUS 酶结合到位于活性位点 30 Å 之外的表面凹槽上的 FMN。其次,利用来自这个 FMN 结合 GUS 的结构和功能数据,我们分析了来自人类微生物组计划数据库的 279 个独特的 GUS 序列,并鉴定了 14 个假定的 FMN 结合 GUS。我们对其中的 4 个进行了表征,并解决了 2 个结构,即来自 Ruminococcus gnavus 和 Roseburia hominis 的 GUS,这证实了它们是 FMN 结合物。第三,对这五个 GUS 的 FMN 结合位点突变体的结合和动力学分析表明,它们利用一个保守的位点结合 FMN,该位点对 GUS 活性不是必需的,但可以影响 K。最后,对 PDB 的全面结构综述表明,这些酶采用的 FMN 结合位点与迄今为止任何结构表征的 FMN 结合物都不同。这些发现揭示了第一个 FMN 结合糖苷水解酶的实例,并表明 FMN 与人类肠道微生物群中碳水化合物代谢之间可能存在联系。