Schmid Jochen, Sperl Nadine, Sieber Volker
Chemistry of Biogenic Resources, Technische Universität München, Schulgasse 16, 94315, Straubing, Germany,
Appl Microbiol Biotechnol. 2014 Sep;98(18):7719-33. doi: 10.1007/s00253-014-5940-z. Epub 2014 Aug 1.
Microbial polysaccharides have a wide range of functional properties and show high relevance in industrial applications. The possibility to create tailor-made polysaccharides by genetic engineering will further enhance the product portfolio and may open new fields of application. Here, we have examined in detail the recently sequenced genome of the welan-producing strain Sphingomonas sp. ATCC 31555 to identify the complete welan cluster and further genes involved in EPS production. The corresponding genes were compared on the nucleotide and amino acid sequence level to the EPS clusters of the described gellan-producing Sphingomonas elodea ATCC 31461, diutan-producing Sphingomonas sp. ATCC 53159, and the S-88-producing Sphingomonas sp. ATCC 31554 strains. We also compared the previously mentioned strains to each other and included the genes upstream of the main cluster in gellan and welan cluster. The cluster organization of Sphingomonas strain S-7 was also compared based on previous hybridization experiments, without nucleotide sequences. We have found that the occurrence of genes in all biosynthesis clusters is connected to the structures of the various produced sphingans. Along these lines, homologous genes responsible for the assembly of the identical repeating unit generally show high sequence identity, whereas genes for putative side chain attachment urf31, urf31.4, and urf34 vary more in distinct areas. Moreover, gene clusters for biosynthesis of diutan, welan, gellan, and S-88 as well as S-7 are similar in general organization but differ in location and arrangement of some genes. Finally, we summarized genetic and mutational engineering approaches toward modified sphingan variants as described in literature.
微生物多糖具有广泛的功能特性,在工业应用中具有高度相关性。通过基因工程创造定制多糖的可能性将进一步丰富产品组合,并可能开辟新的应用领域。在此,我们详细研究了最近测序的产韦兰胶菌株鞘氨醇单胞菌属(Sphingomonas sp.)ATCC 31555的基因组,以鉴定完整的韦兰胶基因簇以及参与胞外多糖(EPS)生产的其他基因。将相应基因在核苷酸和氨基酸序列水平上与已描述的产结冷胶鞘氨醇单胞菌(Sphingomonas elodea)ATCC 31461、产迪坦胶鞘氨醇单胞菌属(Sphingomonas sp.)ATCC 53159和产S - 88鞘氨醇单胞菌属(Sphingomonas sp.)ATCC 31554菌株的EPS基因簇进行比较。我们还将上述菌株相互比较,并纳入了结冷胶和韦兰胶基因簇中主要基因簇上游的基因。基于先前的杂交实验,在没有核苷酸序列的情况下,也对鞘氨醇单胞菌属S - 7菌株的基因簇组织进行了比较。我们发现,所有生物合成基因簇中基因的出现与所产生的各种鞘脂多糖的结构相关。按照这些思路,负责相同重复单元组装的同源基因通常显示出高度的序列同一性,而推测的侧链连接基因urf31、urf31.4和urf34在不同区域的差异更大。此外,迪坦胶、韦兰胶、结冷胶和S - 88以及S - 7的生物合成基因簇在总体组织上相似,但在一些基因的位置和排列上有所不同。最后,我们总结了文献中描述的针对修饰鞘脂多糖变体的遗传和突变工程方法。