Facultad de Ciencias Básicas, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, 3480112, Chile.
Facultad de Ciencias de la Salud, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, 3480112, Chile.
Math Biosci. 2019 Mar;309:66-77. doi: 10.1016/j.mbs.2019.01.005. Epub 2019 Jan 15.
This paper presents a novel epidemiological transmission model of a population affected by two different susceptible-infected-susceptible infectious diseases. For each disease, individuals fall into one of the two susceptibility conditions in which one of the diseases has the highest occurrence level. This model is unique in assuming that: (a) if an individual is infected by one disease, their susceptibility to the other disease is increased; (b) when an individual recovers from a disease they become less susceptible to it, i.e. they acquire partial immunity. The model captures these two assumptions by utilizing a coupled system of differential equations. Dynamic analysis of the system is based on basic reproductive number theory, and pattern visualization was performed using numerical simulation.
本文提出了一个新的流行病学传播模型,用于研究受两种不同易感染-感染-易感染传染病影响的人群。对于每种疾病,个体都处于两种易感性状态之一,其中一种疾病的发病率最高。该模型的独特之处在于假设:(a)如果个体感染了一种疾病,他们对另一种疾病的易感性会增加;(b)当个体从疾病中康复时,他们对该病的易感性会降低,即他们获得了部分免疫力。该模型通过使用一个耦合的微分方程组来捕捉这两个假设。系统的动态分析基于基本繁殖数理论,并通过数值模拟进行模式可视化。