School of Fundamental Sciences, Massey University, Manawatu Private Bag 11 222, Palmerston North 4442, New Zealand.
Sensors (Basel). 2019 Jan 17;19(2):379. doi: 10.3390/s19020379.
Electroencephalogram (EEG) based motor imagery brain⁻computer interface (BCI) requires large number of subject specific training trials to calibrate the system for a new subject. This results in long calibration time that limits the BCI usage in practice. One major challenge in the development of a brain⁻computer interface is to reduce calibration time or completely eliminate it. To address this problem, existing approaches use covariance matrices of electroencephalography (EEG) trials as descriptors for decoding BCI but do not consider the geometry of the covariance matrices, which lies in the space of Symmetric Positive Definite (SPD) matrices. This inevitably limits their performance. We focus on reducing calibration time by introducing SPD based classification approach. However, SPD-based classification has limited applicability in small training sets because the dimensionality of covariance matrices is large in proportion to the number of trials. To overcome this drawback, our paper proposes a new framework that transforms SPD matrices in lower dimension through spatial filter regularized by prior information of EEG channels. The efficacy of the proposed approach was validated on the small sample scenario through Dataset IVa from BCI Competition III. The proposed approach achieved mean accuracy of 86.13 % and mean kappa of 0.72 on Dataset IVa. The proposed method outperformed other approaches in existing studies on Dataset IVa. Finally, to ensure the robustness of the proposed method, we evaluated it on Dataset IIIa from BCI Competition III and Dataset IIa from BCI Competition IV. The proposed method achieved mean accuracy 92.22 % and 81.21 % on Dataset IIIa and Dataset IIa, respectively.
基于脑电图的运动想象脑机接口 (BCI) 需要大量特定于主体的训练试验来为新主体校准系统。这导致校准时间较长,限制了 BCI 在实践中的使用。开发脑机接口的主要挑战之一是减少校准时间或完全消除它。为了解决这个问题,现有的方法使用脑电图 (EEG) 试验的协方差矩阵作为解码 BCI 的描述符,但没有考虑协方差矩阵的几何形状,它位于对称正定 (SPD) 矩阵的空间中。这不可避免地限制了它们的性能。我们专注于通过引入基于 SPD 的分类方法来减少校准时间。然而,基于 SPD 的分类在小训练集上的应用有限,因为协方差矩阵的维度与试验数量成比例地很大。为了克服这个缺点,我们的论文提出了一种新的框架,通过 EEG 通道的先验信息正则化的空间滤波器将 SPD 矩阵转换为低维。通过 BCI 竞赛 III 的数据集 IVa 验证了所提出方法在小样本场景中的有效性。所提出的方法在数据集 IVa 上实现了 86.13%的平均准确率和 0.72 的平均 Kappa。与现有研究中的其他方法相比,所提出的方法在数据集 IVa 上表现更好。最后,为了确保所提出方法的鲁棒性,我们在 BCI 竞赛 III 的数据集 IIIa 和 BCI 竞赛 IV 的数据集 IIa 上对其进行了评估。所提出的方法在数据集 IIIa 和数据集 IIa 上分别实现了 92.22%和 81.21%的平均准确率。