Suppr超能文献

基于对称正定矩阵到局部均值的距离保持的降维方法及其在脑机接口中的应用

Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces.

作者信息

Davoudi Alireza, Ghidary Saeed Shiry, Sadatnejad Khadijeh

出版信息

J Neural Eng. 2017 Jun;14(3):036019. doi: 10.1088/1741-2552/aa61bb. Epub 2017 Feb 21.

Abstract

OBJECTIVE

In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner.

APPROACH

The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples.

MAIN RESULTS

We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique-leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data.

SIGNIFICANCE

The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.

摘要

目的

在本文中,我们针对对称正定(SPD)矩阵流形提出一种非线性降维算法,该算法考虑了SPD矩阵的几何结构,并以监督或无监督方式提供具有高类别区分度的流形低维表示。

方法

所提出的算法试图通过保留到局部均值的距离(DPLM)来保留数据的局部结构,并且还提供一个隐式投影矩阵。DPLM在训练样本数量方面是线性的。

主要结果

我们在脑机接口竞赛IV的多类别数据集IIa以及脑机接口竞赛III的其他两个数据集(包括数据集IIIa和IVa)上进行了多项实验。结果表明,作为降维技术,我们的方法与相关文献中的其他竞争对手相比,由于其对异常值的鲁棒性以及保留数据局部几何结构的方式,能产生更优的结果。

意义

实验证实,将DPLM与滤波器测地线到均值的最小距离作为分类器相结合,与脑机接口竞赛IV数据集IIa上的现有技术相比,具有更优的性能。此外,统计分析表明,我们的降维方法比其竞争对手表现得明显更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验