CEA-LETI, MINATEC Campus, Grenoble, France.
IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8. doi: 10.1109/TBME.2011.2172210. Epub 2011 Oct 14.
This paper presents a new classification framework for brain-computer interface (BCI) based on motor imagery. This framework involves the concept of Riemannian geometry in the manifold of covariance matrices. The main idea is to use spatial covariance matrices as EEG signal descriptors and to rely on Riemannian geometry to directly classify these matrices using the topology of the manifold of symmetric and positive definite (SPD) matrices. This framework allows to extract the spatial information contained in EEG signals without using spatial filtering. Two methods are proposed and compared with a reference method [multiclass Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA)] on the multiclass dataset IIa from the BCI Competition IV. The first method, named minimum distance to Riemannian mean (MDRM), is an implementation of the minimum distance to mean (MDM) classification algorithm using Riemannian distance and Riemannian mean. This simple method shows comparable results with the reference method. The second method, named tangent space LDA (TSLDA), maps the covariance matrices onto the Riemannian tangent space where matrices can be vectorized and treated as Euclidean objects. Then, a variable selection procedure is applied in order to decrease dimensionality and a classification by LDA is performed. This latter method outperforms the reference method increasing the mean classification accuracy from 65.1% to 70.2%.
本文提出了一种基于运动想象的脑-机接口(BCI)新分类框架。该框架涉及协方差矩阵流形中的黎曼几何概念。主要思想是使用空间协方差矩阵作为 EEG 信号描述符,并依赖黎曼几何直接使用对称正定(SPD)矩阵流形的拓扑结构对这些矩阵进行分类。该框架允许在不使用空间滤波的情况下提取 EEG 信号中包含的空间信息。提出了两种方法,并与参考方法[多类公共空间模式(CSP)和线性判别分析(LDA)]在 BCI 竞赛 IV 的 IIa 多类数据集上进行了比较。第一种方法,称为黎曼平均最小距离(MDRM),是使用黎曼距离和黎曼均值实现最小距离到均值(MDM)分类算法的一种实现。这种简单的方法与参考方法的结果相当。第二种方法,称为切空间 LDA(TSLDA),将协方差矩阵映射到黎曼切空间,在该空间中矩阵可以矢量化并视为欧几里得对象。然后,应用变量选择过程来降低维度,并执行 LDA 分类。后一种方法优于参考方法,将平均分类精度从 65.1%提高到 70.2%。