Tabar Yousef Rezaei, Halici Ugur
Biomedical Engineering Department, Middle East Technical University, Ankara, Turkey.
J Neural Eng. 2017 Feb;14(1):016003. doi: 10.1088/1741-2560/14/1/016003. Epub 2016 Nov 30.
Signal classification is an important issue in brain computer interface (BCI) systems. Deep learning approaches have been used successfully in many recent studies to learn features and classify different types of data. However, the number of studies that employ these approaches on BCI applications is very limited. In this study we aim to use deep learning methods to improve classification performance of EEG motor imagery signals.
In this study we investigate convolutional neural networks (CNN) and stacked autoencoders (SAE) to classify EEG Motor Imagery signals. A new form of input is introduced to combine time, frequency and location information extracted from EEG signal and it is used in CNN having one 1D convolutional and one max-pooling layers. We also proposed a new deep network by combining CNN and SAE. In this network, the features that are extracted in CNN are classified through the deep network SAE.
The classification performance obtained by the proposed method on BCI competition IV dataset 2b in terms of kappa value is 0.547. Our approach yields 9% improvement over the winner algorithm of the competition.
Our results show that deep learning methods provide better classification performance compared to other state of art approaches. These methods can be applied successfully to BCI systems where the amount of data is large due to daily recording.
信号分类是脑机接口(BCI)系统中的一个重要问题。深度学习方法在最近的许多研究中已成功用于学习特征和对不同类型的数据进行分类。然而,将这些方法应用于BCI应用的研究数量非常有限。在本研究中,我们旨在使用深度学习方法来提高脑电图运动想象信号的分类性能。
在本研究中,我们研究了卷积神经网络(CNN)和堆叠自编码器(SAE)以对脑电图运动想象信号进行分类。引入了一种新的输入形式,将从脑电图信号中提取的时间、频率和位置信息相结合,并将其用于具有一个一维卷积层和一个最大池化层的CNN中。我们还通过结合CNN和SAE提出了一种新的深度网络。在这个网络中,在CNN中提取的特征通过深度网络SAE进行分类。
所提出的方法在BCI竞赛IV数据集2b上以kappa值衡量的分类性能为0.547。我们的方法比竞赛的获胜算法提高了9%。
我们的结果表明,与其他现有方法相比,深度学习方法提供了更好的分类性能。这些方法可以成功应用于由于日常记录而数据量较大的BCI系统。