Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; Molecular Hepatology Group, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain.
Redox Biol. 2019 May;23:101098. doi: 10.1016/j.redox.2019.101098. Epub 2019 Jan 8.
The intermediate filament protein vimentin constitutes a critical sensor for electrophilic and oxidative stress, which induce extensive reorganization of the vimentin cytoskeletal network. Here, we have investigated the mechanisms underlying these effects. In vitro, electrophilic lipids, including 15-deoxy-Δ-prostaglandin J (15d-PGJ) and 4-hydroxynonenal (HNE), directly bind to vimentin, whereas the oxidant diamide induces disulfide bond formation. Mutation of the single vimentin cysteine residue (Cys328) blunts disulfide formation and reduces lipoxidation by 15d-PGJ, but not HNE. Preincubation with these agents differentially hinders NaCl-induced filament formation by wild-type vimentin, with effects ranging from delayed elongation and increased filament diameter to severe impairment of assembly or aggregation. Conversely, the morphology of vimentin Cys328Ser filaments is mildly or not affected. Interestingly, preformed vimentin filaments are more resistant to electrophile-induced disruption, although chemical modification is not diminished, showing that vimentin (lip)oxidation prior to assembly is more deleterious. In cells, electrophiles, particularly diamide, induce a fast and drastic disruption of existing filaments, which requires the presence of Cys328. As the cellular vimentin network is under continuous remodeling, we hypothesized that vimentin exchange on filaments would be necessary for diamide-induced disruption. We confirmed that strategies reducing vimentin dynamics, as monitored by FRAP, including cysteine crosslinking and ATP synthesis inhibition, prevent diamide effect. In turn, phosphorylation may promote vimentin disassembly. Indeed, treatment with the phosphatase inhibitor calyculin A to prevent dephosphorylation intensifies electrophile-induced wild-type vimentin filament disruption. However, whereas a phosphorylation-deficient vimentin mutant is only partially protected from disorganization, Cys328Ser vimentin is virtually resistant, even in the presence of calyculin A. Together, these results indicate that modification of Cys328 and vimentin exchange are critical for electrophile-induced network disruption.
中间丝蛋白波形蛋白是一种关键的传感器,可感应亲电和氧化应激,从而诱导波形蛋白细胞骨架网络的广泛重组。在这里,我们研究了这些效应的机制。在体外,亲电脂质,包括 15-脱氧-Δ-前列腺素 J(15d-PGJ)和 4-羟基壬烯醛(HNE),直接与波形蛋白结合,而氧化剂二酰胺则诱导二硫键形成。波形蛋白单个半胱氨酸残基(Cys328)的突变会削弱二硫键的形成,并降低 15d-PGJ 的脂质氧化,但不会降低 HNE 的脂质氧化。这些试剂的预孵育会以不同的方式抑制野生型波形蛋白诱导的 NaCl 丝状形成,其效果范围从延长丝状伸长和增加丝状直径到严重损害组装或聚集。相反,波形蛋白 Cys328Ser 丝状的形态受到轻微或不受影响。有趣的是,预先形成的波形蛋白丝状体对亲电物诱导的破坏更具抗性,尽管化学修饰并未减少,表明组装前的波形蛋白(脂质)氧化更为有害。在细胞中,亲电试剂,特别是二酰胺,会迅速而剧烈地破坏现有的丝状体,这需要 Cys328 的存在。由于细胞内波形蛋白网络处于不断重塑状态,我们假设丝状体上的波形蛋白交换对于二酰胺诱导的破坏是必要的。我们证实,通过 FRAP 监测到的减少波形蛋白动力学的策略,包括半胱氨酸交联和 ATP 合成抑制,可阻止二酰胺的作用。反过来,磷酸化可能促进波形蛋白的解体。事实上,用磷酸酶抑制剂 calyculin A 处理以防止去磷酸化会加剧亲电试剂诱导的野生型波形蛋白丝状体破坏。然而,虽然磷酸化缺陷的波形蛋白突变体仅部分免受去组织化,但 Cys328Ser 波形蛋白几乎不受影响,即使存在 calyculin A 也是如此。总之,这些结果表明 Cys328 的修饰和波形蛋白的交换对于亲电物诱导的网络破坏至关重要。