Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain.
Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain.
Redox Biol. 2024 Sep;75:103282. doi: 10.1016/j.redox.2024.103282. Epub 2024 Jul 23.
The intermediate filament protein vimentin performs an essential role in cytoskeletal interplay and dynamics, mechanosensing and cellular stress responses. In pathology, vimentin is a key player in tumorigenesis, fibrosis and infection. Vimentin filaments undergo distinct and versatile reorganizations, and behave as redox sensors. The vimentin monomer possesses a central α-helical rod domain flanked by N- and C-terminal low complexity domains. Interactions between this type of domains play an important function in the formation of phase-separated biomolecular condensates, which in turn are critical for the organization of cellular components. Here we show that several oxidants, including hydrogen peroxide and diamide, elicit the remodeling of vimentin filaments into small particles. Oxidative stress elicited by diamide induces a fast dissociation of filaments into circular, motile dots, which requires the presence of the single vimentin cysteine residue, C328. This effect is reversible, and filament reassembly can occur within minutes of oxidant removal. Diamide-elicited vimentin droplets recover fluorescence after photobleaching. Moreover, fusion of cells expressing differentially tagged vimentin allows the detection of dots positive for both tags, indicating that vimentin dots merge upon cell fusion. The aliphatic alcohol 1,6-hexanediol, known to alter interactions between low complexity domains, readily dissolves diamide-elicited vimentin dots at low concentrations, in a C328 dependent manner, and hampers reassembly. Taken together, these results indicate that vimentin oxidation promotes a fast and reversible filament remodeling into biomolecular condensate-like structures, and provide primary evidence of its regulated phase separation. Moreover, we hypothesize that filament to droplet transition could play a protective role against irreversible damage of the vimentin network by oxidative stress.
中间丝蛋白波形蛋白在细胞骨架相互作用和动力学、机械感知和细胞应激反应中发挥着重要作用。在病理学中,波形蛋白是肿瘤发生、纤维化和感染的关键因素。波形蛋白丝经历了明显而多样的重组,并作为氧化还原传感器发挥作用。波形蛋白单体具有中央α-螺旋杆结构域,两侧为 N-和 C-末端低复杂度结构域。这种类型的结构域之间的相互作用在形成相分离的生物分子凝聚物中起着重要作用,而凝聚物的形成对于细胞成分的组织又至关重要。在这里,我们表明,包括过氧化氢和二酰胺在内的几种氧化剂可使波形蛋白丝重塑成小颗粒。二酰胺引起的氧化应激诱导丝状物快速解聚成圆形、运动的小点,这需要单个波形蛋白半胱氨酸残基 C328 的存在。这种效应是可逆的,在氧化剂去除后的几分钟内,丝状物可以重新组装。二酰胺诱导的波形蛋白液滴在荧光漂白后恢复荧光。此外,表达不同标记的波形蛋白的细胞融合允许检测到两种标记均为阳性的小点,表明波形蛋白小点在细胞融合时融合。已知改变低复杂度结构域之间相互作用的脂肪醇 1,6-己二醇,很容易在低浓度下溶解二酰胺诱导的波形蛋白小点,这依赖于 C328,并阻碍了重新组装。综上所述,这些结果表明,波形蛋白的氧化促进了快速和可逆的丝状重塑为生物分子凝聚物样结构,并提供了其调控相分离的初步证据。此外,我们假设丝状到液滴的转变可能在氧化应激对波形蛋白网络的不可逆损伤中起到保护作用。